William & Mary
W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

1983
HILDA: The Flexible Design and Implementation
of a Database Machine Executive

Paul Anthony Fishwick
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

b Part of the Computer Sciences Commons

Recommended Citation

Fishwick, Paul Anthony, "HILDA: The Flexible Design and Implementation of a Database Machine Executive" (1983). Dissertations,
Theses, and Masters Projects. Paper 1539626818.
https://dx.doi.org/doi:10.21220/s2-bere-xf88

This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for
inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact

scholarworks@wm.edu.

https://scholarworks.wm.edu?utm_source=scholarworks.wm.edu%2Fetd%2F1539626818&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539626818&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wm.edu/etds?utm_source=scholarworks.wm.edu%2Fetd%2F1539626818&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539626818&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539626818&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-bere-xf88
mailto:scholarworks@wm.edu

HILDA : THE FLEXIBLE DESIGN AND

IMPLEMENTATION OF A DATABASE MACHINE EXECUTIVE

A Thesis

Presented to

The Faculty of the Department of Mathematics and Computer Science

The College of William and Mary in Virginia

In Partial Fulfillment

Of the Requirements for the Degree of

Master of Science

by
Paul A. Fishwick

1983

APPROVAL SHEET

This thesis is submitted in partial fulfillment of
the requirements for the degree of

Master of Science.

WWWM/

Author

Approved, July 1983

Foeo et

< Stefan Feyock

1A & Mopea

Robert Noonan

TABLE OF CONTENTS

Page
ACKNOWLEDGEMENTS
LIST OF FIGURES
LIST OF APPENDICES
ABSTRACT
INTRODUCTIONQ . L . . . L L4 L 2
PART I. A BASIS FOR THE THESIS RESEARCH
CHAPTER I. DATA BASE MANAGEMENT SYSTEMS . . « ¢« « « ¢« ¢ « « 3
CHAPTER II. DATABASE MACHINES. . . ¢ ¢ ¢ « o o o« « s « « « <10
CHAPTER III. THE INTEL DATA BASE PROCESSOR. . « « « « « « « 13
CHAPTER IV. THE DEVELOPMENT OF HILDA . . ¢ ¢« « o o o o« « o« +24
PART II. THE DESIGN AND IMPLEMENTATION OF HILDA
CHAPTER V. LAYER 1: THE DATA COMMUNICATIONS PROTOCOL. . . .28
CHAPTER VI. LAYER 2: A SEMANTICS SPECIFICATION PACKAGE . . .43
CHAPTER VII. LAYER 3: A VIEW-ORIENTED QUERY LANGUAGE.51
CHAPTER VIII.CONCLUDING REMARKS . ¢ « &+ « o o s o s o o o » 67
GLOSSARY OF ACRONYMS. &+ &« o ¢ ¢ o o o o o o o o o o o o o o 13

APPENDIX A. SPP SOURCE

APPENDIX B. A SAMPLE TRANSMISSION TRACE
APPENDIX C. DBPSSP SOURCE

APPENDIX D. DBPSSP EXAMPLES

APPENDIX E. DBPQL CONCEPTUAL PROCEDURES
APPENDIX F. DBPQL GRAMMAR FILE
APPENDIX G. A SAMPLE DBPQL USER DIALOG
FIGURES

REFERENCES

ACKNOWLEDGEMENTS

The author would like to acknowledge the help of the
thesis review committee for providing suggestions and
constructive criticisms concerning the earlier drafts of the
thesis. The comments and questions of Stefan Feyock, Bob
Noonan, and Kathy Samms during the thesis defense were very
helpful. 1In particular, the advice and numerous suggestions
of my thesis advisor(Stefan Feyock) are much appreciated.
His advice and numerous suggestions have made this thesis a
more comprehensible one. The author would also 1like to
thank the IPAD office at NASA Langley Research Center for
providing a work order so that the thesis research could be
successfully completed. Specifically, discussions with

Floyd Shipman, Timothy Rau, and Bob Fulton are appreciated.

Finally the author acknowledges the support of his
wife, Martha during the long hours. Her continuous support

has helped.to make this thesis possible.

LIST OF FIGURES

Figure 1 - The Physical DBP Environment

Figure 2 - Relational Commands for Manipulating Views

Figure 3 - HILDA : A general flow chart

Figure 4 - HILDA : A sample query

Figure 5 - Layers within HILDA and SPP

Figure 6 - General form for Host-DBP interaction

Figure 7 - VAX Asynchronous Communications Parameters

Figure 8 - Threaded Data Structure of SPP

Figure 9 - Request Module Form

Figure 10 - A sample assembly for "REMARK"

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

LIST OF APPENDICES

SPP SOURCE

A SAMPLE TRANSMISSION TRACE

DBPSSP SOURCE

DBPSSP EXAMPLES

DBPQL GRAMMAR FILE

A SAMPLE DBPQL USER DIALOG

DBPQL CONCEPTUAL PROCEDURES

ABSTRACT

The design and implementation of a three~layer
executive 1is described for the Intel Data Base Processor.
The executive is termed "HILDA" which stands for High Level
Data Abstraction System. The layered components of the
executive include an asynchronous error-correcting protocol,
a semantics specification package, and a high-level
interactive query language. Relevant source 1listings and
interactive results are included in the appendices.

HILDA : THE FLEXIBLE DESIGN AND

IMPLEMENTATION OF A DATABASE MACHINE EXECUTIVE

INTRODUCTION

The management of large quantities of scientific data
presents special problems. There is a great need for the
engineering analyst to be able to easily and efficiently
access vast amounts of data associated with engineering
computer programs. A project called IPAD(Integrated
Programs for Aerospace Vehicle Design)[1,2,3] was created
at NASA Langley Research Center so that research could be
initiated to address the problem of engineering data base

management.

Due to a joint IPAD/ICASE(Institute for Computer
Applications in Engineering) effort, an Intel Data Base
Processor(DBP) was obtained to aid in the research
associated with scientific and engineering data management.
This thesis describes the design and development of a
flexible set of tools which allow the scientific user to

efficiently use the DBP.

PART I

A BASIS FOR THE THESIS RESEARCH

CHAPTER I

DATA BASE MANAGEMENT SYSTEMS

The Engineering Data Handling Problem

With the vast amounts of scientific analysis data being
manipulated in the engineering work environment, a need
exists for adequately managing the data. In addition to the
problems associated with managing large quantities of data,
there also exist integration problems when engineers are
required to move information from one computer program to
another in a reliable manner. Over the course of a project
several different application programs will have been used
since it is rare to find one program which will satisfy the
needs of every engineer. The data from these programs must
be efficiently integrated and managed to insure the success

of the project.

4

There are currently many programs oriented towards
engineering applications which attempt to solve this data
.management problem by directly using sequential or random
files. This primitive type of data management is not
sufficient when large quantities of data are accessed, since
standard disk files do not represent a flexible method of
accessing data. There also exists an efficiency problem
with respect to data access times when using sequential or
random access files. In the IPAD project, it was seen that
a new type of data management for scientific data was
necessary so that the engineer could have a flexible and
easy-to-use mechanism for working with design and analysis

data.

Current Data Base Management Systems

Currently available data base management technology was
surveyed to obtain an initial solution to the data
management problem. The three major data models were
carefully reviewed to determine the most appropriate given
the engineering work environment. It is assumed at this
point that the reader has a basic understanding of certain
database principles as presented in references 4 and 5. The

three data models are briefly described :

5
Hierarchical - 1Involves storing a group of data
records in a hierarchical(or +tree-like) fashion.
Data sets formed wusing tgis data model can be

referred to as ‘"owner" or "member" sets since the

data is organized into trees.

Network - This data model revolves around the network
data structure. Any item may Dbe linked with any
other item in a database using explicit 1links(or
pointers). A major difference between the network
data model and the hierarchical data model is that a

member record may have more than one owner in the

network model.

Relational - This data model 1is represented by a
collection of two-dimensional tables called
relations. Each relation is composed of a set of
named columns(attributes) and rows(tuples). Each
item is declared to be of a certain data type such as

integer, floating point, or ASCII.

The relational model was chosen as the most appropriate

in the scientific/engineering environment for the following

reasons:

Most scientists and engineers are familiar with data
that is presented in tabular form. Mathematics and
engineering texts often contain appendices which

include tabular data.

6

2. The relational model does not burden the user with the
task of having to keep track of explicit links which
connect the sets of data. With large amounts of
.engineering data, the number of pointers in a
hierarchical or network data base can be staggering.
The relational data model promotes a pointer-free
method of manipulating data. Relationships among the
data items may be easily formed wusing relational
algebra upon the tables. Examples of this algebra

will be included throughout the thesis.

3. The algebra that is used to initiate queries for a
relational data base is very user-oriented. In many
cases, the written query syntax resembles an English
language command as it would be verbalized. This

English command syntax promotes a short "learning

curve" when the engineer needs to access data areas.

A relational data base system called RIM(Relational

Information Manager)[6] was created within the IPAD project
to address the data management problem. RIM permits the
engineer to easily manipulate data with English-like

commands.

RIM is specifically oriented towards the engineering
environment. In addition to containing the usual primitive
data types such as integer and ASCII, RIM contains double
precision, vector and matrix data types which are more
common in the engineering environment. Tolerances, which

are fairly common in the scientific world(and not so much in

7

the business world), are also handled in RIM. One may
specify retrieval of data items Dbased, not on an exact
floating point value, but on a reasonable approximation

based on tolerance.

It was decided that there were many more issues to be
investigated concerning scientific data management that go
beyond the RIM development. Specifically, when large
quantities of data are stored in a RIM database, a
performance problem arises. Selecting and retrieving
certain data becomes cumbersome due to a time lag brought on
by the overhead of RIM on the host VAX 11/780 computer. For
example, a typical query performed on a relation with five
thousand tuples may cause a thirty second wait depending on
the system 1load. Also, there are certain facets of RIM

which needed improving :

1. RIM does not contain views("views" are described in
chapter 3). When a new relation is formed through
relational algebra, this relation does not contain
any logical connection to the underlying relation
from which it was formed. This means, for instance,
that when data is stored into the new relation, this

change is not reflected in the underlying relation.

2. RIM has a FORTRAN interface so that data manipulation
may be controlled from within a user's application
program. The interface operates differently from the

easy-to-use interactive command language. One uses

8

the program interface by calling a set of subroutines
that contain many different arguments (which refer to
relation and attribute names, attribute values,
etc.). The interactive command 1language, on the
other hand, requires a more English-like command
specification. It would be beneficial if the program
interface mode operated more similarly to the
interactive mode in terms of command syntax.
Specifically, it would be nice if the program
interface supported a single subroutine whose single
argument would contain the command text that would
normally be entered interactively to produce a given

result.

3. RIM does not contain the mechanism that allows the
sophisticated user to build network and hierarchical
data structures based on the relations. It 1is
possible to have a relational system which contains
performance-oriented pointers and hash tables that
are present in the schema yet transparent to the
casual user who wishes only to see the pointer-~free
tabular output. RIM does not contain many of these
performance capabilities and therefore performance
problems arise when large amounts of engineering data

are involved.

It was decided that since performance was such a

E
critical issue 1in scientific data management, the use of

database hardware(i.e. 'data base machines) would provide an

9

interesting avenue of research. Data base machines will be

discussed in the next chapter.

CHAPTER II

DATA BASE MACHINES

Data Base Machines are hardware devices that perform
data base functions normally associated with software data
base management systems. Typically the data base machine is
physically connected to other computer systems in a network
fashion or as a back-end data base engine to a host

computer.

In a recent survey paper, Maryanskil[7] points out some

of the benefits derived from data base machines :

1. Performance - The data base machine improves the
throughput of a loaded host computer since the data
base management functionality is removed from the
host and delegated to the data base machine. The
data basé machine operates concurrently with the host

computer to achieve optimal performance.

10

11

2. Cost - The attachment of a data base machine to an
existing host computer is often cheaper than the
purchase of a 1larger host computer(such as a
mainframe system) for handling data base chores. As
data base machines proliferate, the cost of the

machines will gradually fall.

3. Security - Since the data base hardware is physically
separate from the host computer, the programmer is
forced to perform all data access through the channel
connecting the host and data base machine. This
channeling supports a structured, secure means of
doing data base management. When the data base
functionality is all on the host computer, it is
often possible to bypass the normal conventions in
accessing data base files (either inadvertently or

intentionally).

Over the past nine years, a number of data base machine
prototypes have been built. The first prototype, named
XDMS, was constructed at Bell Laboratories by Canaday et
al.[8] in 1974. The purpose of the XDMS research was to
demonstrate the feasibility of the back-end data Dbase
machine concept. The term "back-end" refers to the fact
that the data base machine is acting as Dback-end to the
front-end host computer which gives all the orders. The
back-end data base machine simply receives orders and

responds to them. It does not initiate orders.

12

Presently, there are very few commercially available
data base machines. The most notable are the Britton-Lee
IDM(Intelligent Database Machine) and the 1Intel DBP(Data
Base Processor). Both machines are similarly priced and
perform in a similar manner. Britton-Lee includes a query
language and communications protocol to allow the user to
talk to the IDM. 1Intel is planning on supplying a query
capability and communications software in the near future.
Both the IDM and DBP operate by being passed a sequence of

low-level data base management operations from the host

computer.

In an agreement involving Intel Corporation,
ICASE(Institute for Computer Applications in Science and
Engineering) and NASA Langley Research Center, an Intel DBP
was donated so that the effect of the data base machine in
the engineering work environment could :be adequately

studied.

CHAPTER III

THE INTEL DATA BASE PROCESSOR

This chapter presents an overview of the Intel Data
Base Processor(DBP). To appreciate the remainder of this
thesis, it is important that the reader gain an

understanding of the purpose and capabilities of the DBP.

The Intel DBP acts as an "intelligent mass storage
controller" whose primary purpose 1is to relieve the host
computer of time-consuming data base chores. On the
majority of current computer systems the mass storage
controller that controls the disk wunits contains 1little
logic or functionality. Most disk controllers, for
instance, contain only the capability to read/write tracks
and sectors. An "intelligent" mass storage controller, on
the other hand, provides a wide range of functionality to
users and programs which access it, such as the capability
to manage databases and manipulate entities within the

databases. The entity types that the DBP handles is the

13

14

subject of a subsequent section.

The DBP may be used in a variety of environments. It
can be used as a back-end device connected to a host
computer which drives it or as a server acting as the data
base manager node in a local area network. For purposes of
the work described in this thesis, the DBP was used as a
back-end data base machine which was directly connected to a
VAX 11/780 minicomputer. This arrangement is portrayed in

figure 1.

In the back-end environment, the DBP is connected to a
host computer which gives orders to the DBP. Each order is
in the form of a contiguous set of commands called a
"request module". A program on the host sends a request
module to the DBP and the DBP sends back one or more
"response modules". There are many different types of
commands that one may include within a request module to be
delivered to the DBP. Some of these types are identified
below. Note that some of the key terms used within the
command overviews, such as the database entities "session",
"file", and "view" will be described in the following

sections.

1. Administration Commands : Allow the user to create,
delete, and make modifications to databases, files,
and views. Typical commands include the capability
to define file schemas (the organization of the
file), inéégrity constraints (keeping tabs on the

consistency of ‘the data), and views(windows created

15

from existing files). These commands do not
manipulate the data contained within the files, but
rather the status and structure associated with files

and other major DBP entities.

Resource Control Commands : Provide access to the
DBP entities. For instance, views may be either
attached or detached (freed) from the users current
application session. Locks may be placed at
different levels on certain entities. The creation
of these 1locks and the keys with which to open the

locks are part of the resource control mechanism.

Performance Enhancement Commands: Allow the analyst
to enhance the performance of the DBP using certain
techniques such as pointers, hash tables for a given

item, and indexes.

Data Manipulation Commands : Perform manipulation of
the data stored within a given database file.
Manipulation may involve fetching, storing, or

modifying data.

Flow Control Commands : Allows control structures to
be included within the command block. Conditional
execution of certain DBP requests are facilitated
with "IF...ELSE...ENDIF". Iterative execution 1is

accomplished by setting up "LOOPS".

16

The DBP executes request modules using "sessions". A
session is defined to be a set of host-resident application
programs which are functionally related. Programs which
involve the manipulation of an engineering drawing might be
considered to be a session. A set of programs which keep
track of the inventory for the drawings would be in another
session. There are two types of sessions: control and
application. Control sessions are used for DBP
administrative purposes such as creating one or more
application sessions. Application sessions are used for the
majority of DBP commands including commands which define and

manipulate data base entities.

When one thinks of the primary entities which are
stored on the disks attached to the DBP, one thinks of three
particular entities : databases, files, and views. A
database is a collection of files. In a scientific
environment, a database might contain all of the data
relevant to a real model(such as a structural model of an

airplane wing).

In the DBP, one may have two types of files:
unstructured and structured. Structured files are relations
which look like two-dimensional tables and are composed of a
set of tuples and items(rows and columns). Unstructured
files are simply byte streams(that is, .there is no
structured tabular format). All disk files on current
computer systems may be considered to be unstructured since
there is no underlying §tructure to the file: the operating

" system looks at the file as a sequential string of bytes.

17
In the following pages, it will be shown that the DBP

permits the two different types of files, unstructured and
structured, to be manipulated together using the special
operations SUBSTRING and CONNECT. This thesis is most
concerned with discussing structured files rather than
unstructured files since structured files represent
relations, which are familiar entities. Each item within a
structured file may be of a certain data type such as
signed/unsigned integer, ASCII, stringpointer, or

recordpointer.

Views are pieces of the data within files which are

sectioned out so that the user can "see" the data which is
relevant at any particular time. Files can be quite 1large,
and it 1is often necessary to look at only a portion of the
files. A view is therefore a "window" into one or more
files. Views are formed using relational algebral[9] on
other previously created views. Note that when a view is
"created", it is created only in a virtual sense. That is,
views are typically created by implementing a hidden table
full of pointers which directly point to the file rows and
columns that the user has chosen using relational algebra.
Therefore, when data is stored into a view, it is actually
stored into the underlying file from which the view was
"created". Retrieving data from a view is similar. Data is
retrieved via the view directly from the underlying file.
Examples of using relational algebra and creating views will
subsequently be shown. First, a description of each type of

view is presented along)with accompanying figures 2a-2g:

18
JOIN - A join view 1is created from two existing

source views. The two existing views are "joined"(or
concatenated) together based on common values within
a single item in each source view. The concatenation
may be seen as a "column-wise" transformation, since
the new view will contain the total number of columns

from both source views.

SELECT - A select view 1is created by applying a
constraint(or constraints) +to the total number of
rows in a source view. After the constraint has been

applied, the newly formed select view will contain a

subset of the rows in the original source view.

PROJECT - A project view is similar to a select view
except that a constraint is applied to the columns in
the source view. That is, the project view is formed
by specifying a subset of the original number of

columns found in the source view.

ORDER - An order view 1is created by sorting on
certain items within a source view using either a

ascending or descending order.

UNION - A union view is similar to a join view in
that two source views are concatenated together to
form a - new view. The difference 1is that the
concatenation is performed row-wise so that the new
view contains the total number of rows from the

original source views added together. It is required

that the two source views have the .same number of

19

items of identical data types.

6. SUBSTRING -~ A substring view is created using an
unstructured file and a pattern-matching sequence.
An example of the use of SUBSTRING may be seen when
looking at a word processing application. If a
pattern containing CRLF(carriage return, line feed)
were specified, then one could form a structured
SUBSTRING view delineating the sentences within any

given piece of text.

7. CONNECT - A connect view is similar the previously
defined join view except that two views are connected
using an item with the specific "stringpointer" data
type. This pointer is automatically updated when

items are loaded into the view.

Since views are so important to wunderstanding the
function of the DBP, some examples relating to the
scientific/engineering environment are presented. The
example files represent typical entities which would be
found in a "finite element modeling" database. A finite
element model is a geometric model of a real structure which
is composed of connected two, three, and four -noded
elements. A "node" is a point which 1is used to join

together several finite elements. In finite element

modeling, two-noded elements are called either "beams" or
"rods", while three-noded elements are denoted "triangular
elements" and four-noded elements are denoted "quadrilateral

elements"”. Real structures such as bridges, airplane wings,

20
and electrical transmission towers may be analyzed by
breaking the structure into a finite number of elements. 1In
the finite element modeling database we may define four
sample files called, "BEAMS", "TRIANGLES", "QUADS", and
"NODES". The files BEAMS, TRIANGLES, and QUADS contain
finite element data whereas NODES contains the 3D model
coordinate data. Using this finite element modeling
example, the formation of certain views are presented. For

these examples, two files "BEAMS" and "NODES" will be used:

S +
f FILE : BEAMS ¢
Fom e +

GROUP ELEMENT NODE1l NODE2 EL-TYPE NOM-SIZE MATERIAL

1 1 1 2 WFL 8x8 ALUMINUM
1 2 3 4 I 3x2 TITANIUM
2 3 5 6 WFL 3x2 GRAPHITE
S —— +
9 FILE : NODES ¢
o +
NODE X Y Z
1l 5.3 6.22 0.0
2 6.7 10.20 0.0

w
[
o
[
(@}
0w
o
o

(6, B -
N
w
wm
w
O
o
o

21

6 8.4 21.00 2.0

When these two files are initially created they
automatically contain "identity" views which represent the
base views upon which we may create other views. For
instance, we can create a new view of the beam element
connectivities by executing the following conceptual DBP

command :

create project view CONNECTIVITIES from beams

including NODEl NODE2 EL-TYPE

If we then wanted to work just with the connectivities
of wide-flange(WFL) beams, we could define another view on

top of the view "CONNECTIVITIES":

create select view WFL-CONNECT from CONNECTIVITIES

where EL-TYPE = WFL

yielding :

Fomm e +
f VIEW: WFL-CONNECT 9
o +

NODE1l NODE2 EL-TYPE

5 6 WFL

22

Now, supposing we wanted to work with the Z-values

associated with the element connectivities. This new view

will require that we use both "BEAMS" and "NODES". Starting

from scratch, we might do the following:

create join view J1 from BEAMS NODEl NODES NODE

create project view Pl from Jl1 including ELEMENT NODEl Z NODE2

create join view J1 from Pl NODE2 NODES NODE

create project view Z-VALUES from Jl excluding NODE X Y

yielding:
R T E— +
€« VIEW : Z-VALUES
tmm e +
ELEMENT NODE1l Z NODE2 Z
1 1 0.0 2 0.0
2 3 0.0 4 0.0

23

It is important to note that views are virtual database
entities as opposed to relations which are real entities.
When a view is created using relational algebra it should be
referenced as a channel into one or more database relations.
Views which have been created and are no longer needed may
easily be deleted from the user's session. Note that we
could store data into view "Z-VALUES" and this change would
be reflected back in the original identity views upon which

Z-VALUES was created, namely "BEAMS" and "NODES".

The DBP supports all three major data models:
Relational, Hierarchical, and Network. When one is setting
up a schema for files within a database, "pointer" items may
be created. These pointers permit underlying hierarchical
and network data structures to be defined. Items 1in one
file are 1linked with items in other files using the
"recordpointer" data type. Therefore, many-to-one and
one~to-many pointer relationships may be defined inside the
database files. After having defined the schemas, the user
is free to access the data relationally using views. Hence,
the DBP may be thought of as a "relational data base
machine" since relational algebra is the primary mechanism
during data accesses. However, as just mentioned, the other
two data models can be accommodated by careful modification

of the underlying file structure with pointers.

CHAPTER IV

THE DEVELOPMENT OF HILDA

The existing host-resident interfaces to the currently
available data base machines were found to be inflexible
with respect to the modification of syntax and semantics
associated with query processing and command encoding. The
purpose of this thesis is to present an extensible and
flexible means of specifying the syntax and semantics for a

data base machine.

This thesis represents an initial investigation into a
flexible and high-level method of communicating with a data
base machine. A system called HILDA, which stands for High
Level Data Abstraction System, has been designed and
implemented by the author in an attempt to bridge the gap
between the somewhat rigid data base machine and the user.

In this sense, HILDA is an executive (or operating system),

since it represents a collection of tools which allow for a
high-level interface mechanism to the data base machine
resource. The general structure of HILDA may be seen in

figures 3 and 4. Figure 3 displays the method by which one

24

25

may flexibly modify the syntax and semantics for the data
base machine. Figure 4 shows the anatomy of a sample query

made to the data base machine.

‘The specific data base machine used during the research
was the 1Intel Data Base Processor(or DBP). It should be
noted, however, that HILDA has been designed so that it may
easily be integrated into other research efforts utilizing
different vendors' data base machines. The DBP is connected
to a VAX 11/780 host computer via a serial 1link. To use the
DBP, one must send a set of encoded commands to the DBP and
then receive a set of encoded responses. Most of the source
code within HILDA is transportable to other host machines.
The machine-dependent text is identified as such to aid in

the transportation problem.

HILDA is functionally structured into three layers.
The bottom layer 1is the closest to the actual data base
machine. This layer is represented by the SPP program, an
asynchronous error-correcting protocol. The middle layer
represents a semantic specification for the data base
machine. Using a small set of rigorously specified semantic
procedures a developer may easily form DBP request blocks
which are, in effect, pieces of machine code that the DBP
understands. The highest layer of HILDA is represented by
the query language DBPQL. DBPQL permits both casual and
sophisticated users to reap the benefits of the data base
machine via a ;simple-to-use view mechanism. The unusual
aspect of DBPQL lies in-its flexible mechanisms for syntax

and semantics modification. Each of these layers will be

26

discussed in-depth throughout the remainder of the thesis.

Some of the points that will be addressed in the thesis

along

below:

l.

with certain data base machine issues are highlighted

As previously mentioned, HILDA has been divided into
three distinct layers. The layered approach seemed
to be the best method for adequately testing the

various software component modules.

The data base machine takes a 1load off the host
computer by performing the time-consuming chores
associated with data management. The performance of
both the data base machine and the host during
communications should be measured. The tools
necessary for this measurement are included in this

thesis.

The data base machine speaks a particular low-level
language, much 1like any given microprocessor. Both
require some type of semantic specification which is
used during communications. In the case of the
microprocessor, the semantics language might be the
assembler. The semantics specification language for
the DBP is slightly different. This specification is

discussed.

The most important design element discussed within
this thesis 1is the flexibility associated with the

creation of the syntax and semantics in HILDA. The

27

flexible features found within HILDA will be

identified in each chapter.

At the end of each chapter, the results of the
particular research performed will be discussed. Problems
encountered and things 1learned from the work will be
emphasized in the results section. After all the chapters,
there is a concluding remarks section which summarizes the
overall results of the research. A brief description of
each chapter associated with the design and development of

HILDA is shown below:

1. Cbapter V - A description of the asynchronous
protocol design and implementation. The protocol
includes cyclic error recovery and allows a host
computer to communicate with the DBP. Some useful

low-level utilities will also be outlined.

2. Chapter VI - A semantics specification package for
the DBP. This package is composed of a small set of
procedures which permit an efficient construction of

request modules to be sent to the DBP.

3. Chapter VII - A user-oriented interactive query
language. The query language is based on relationa;
algebra which operates on objects called "views".
Many of' the essential but arcane DBP functions are

hidden from the user.

PART II

THE DESIGN AND IMPLEMENTATION OF HILDA

CHAPTER V

LAYER 1 : THE DATA COMMUNICATIONS PROTOCOL

The design and implementation of a data communications
protocol for the Intel Data Base Processor (DBP) is defined
in this chapter. SPP is an asynchronous data communications
protocol that has been designed and implemented for use with
the Intel Data Base Processor. The protocol is termed SPP
(Service Port Protocol) since it enables data transfer
between the host computer and the DBP service port. The
service port may be connected either to a host computer or
to an interactive terminal which 1is wused as a console
monitor. The service port is currently the sole means of
communicating with the DBP. The data rate using the service
port is limited to 9600 baud. Therefore, it should be noted
that even though the complete functionality of the DBP may
be studied, the performance of the DBP will be slow.
Efforts to implement a high-speed channel link(Ethernet) are

currently underway at Intel.

" 28

29

The protocol implementation is extensible in that it is
explicitly layered and the protocol functionality is
hierarchically organized. Extensive trace and performance
capabilities have been supplied with the protocol software
to permit optional efficient monitoring of the data transfer
between the host and the Intel data base processor. The
design of SPP is fairly typical of communications protocols

which use cyclic error recovery.

Machine independence was considered to be an important
attribute during the design and implementation of SPP. Most
of the protocol is therefore written in FORTRAN so that it
may be portable among different machines. The protocol
source code is fully commented and is included in Appendix A
of this report. All source text which contains machine
dependent constructs is marked to aid the analyst operating

in another data base machine research project.

AN OVERVIEW OF SPP

SPP is the supporting first layer within HILDA. The
other two layers, DBPSSP and DBPQL, rely completely on the
correct operation of the protocol during data transmissions.
The protocol permits complete usage of the DBP
functionality. The physical environment in which the DBP
operates consists of the host DEC VAX 11/780 minicomputer
with VMS level 3 operating system, the Intel Data Base
Processor, and an RS-232 connection. At its most abstract

interpretation, SPP is composed of the two procedures "Send

30

Request"” and "Receive Response”. The SPP user may send a
request (composed of a contiguous set of encoded commands)
and receive a set of responses which may be in the form of
ASCII text or a more general binary form. "Send Request"”
and "Receive Response" activate a hierarchy of hand-shaking
primitives which include error detection and correction
capabilities using cyclic redundancy checking on both the

host and DBP sides.

SPP may be viewed as a three-layer protocol. The
"layer" within the protocol should not, however, be confused
with the layers within HILDA (see figure 5). The SPP layers
may therefore be construed to be sub-layers of the HILDA
data communications layer. The three sub-layers of SPP are
outlined below and described more completely on the

succeeding pages.

l. Application/Session:

The sub-layer representing the highest level
interface between the application software on the

host computer and the DBP.

2. Data Link:

A middle protocol sub-layer representing structured
data transmission handshaking implemented with error

detection and correction.

31
3. Physical Link:

The sub-layer closest to +the DBP, representing a

primitive block I/O capability.

It is important to note that all procedures within the

layers of the SPP protocol operate strictly on the host

computer. The 1Intel DBP has its own embedded set of

protocol layers in firmware. Each of the SPP protocol

layers will be separately discussed.

The Application/Session Sub-Layer

This is the protocol 1layer closest to the actual
DBMS (Data Base Management System) application software
accessing the data base machine. The application/session

sub-layer is composed primarily of two procedures,

"SEND REQUEST" and "RECV_RESPONSE" which perform as

demonstrated below (note that "PCB" stands for Parameter

Control Block which is described in the section on data

structures):

Function Arguments Description

SEND_ REQUEST MODULE Byte array to be sent

NBYTES_SENT

PCBTYPE

Number of bytes in 'MODULE’

Control or application PCB flag

APPLICATION_ID A host-assigned id #

REQUEST_ID

Id # of the session making the

32

request

RECV_RESPONSE MODULE Byte array received from DBP
NBYTES_RECV Number of bytes received
PCBTYPE Control or application PCB flag
MORE_TO_COME Boolean flag representing whether

all DBP data has been received

The "APPLICATION ID" argument (in SEND REQUEST) is a

host-assigned number identifying the application program

which will be sending the request to the DBP. "REQUEST_ ID"
(or session ig) refers to the DBP-assigned number
identifying the application program. A program that is

sending a request to the control session must use a
REQUEST ID of zero, whereas programs sending application
session requests may use the REQUEST ID numbers 1 to 4 which
are assigned by the DBP when the host creates application
sessions. The request module contains "NBYTES_SENT" bytes
of DBP machine code. It should be noted that the response
module returned may be null (that is, NBYTES RECV is zero)
since many DBP operations do not yield a -response, An
example of the use of the above procedures may be shown in
the form of the DBP conceptﬁal command "REMARK <HOST>
<HELLO>" which is performed after having started up the DBP

with "DBPSTART":

33

C
C VMS(VAX OPERATING SYSTEM) FORTRAN EXAMPLE
c
BYTE MODULE(512)
PARAMETER APPLICATION = 1
DATA MODULE
X /'3A'X,'01'X,'01'X,'05'X,
X '48'X,'45'X,'4C'X,'4C'X, '4F'X, 'FF'X, '00'X/
CALL SEND_REQUEST(MODULE,11,APPLICATION,1,1)

CALL RECV_RESPONSE(MODULE,NBYTES_RECV,APPLICATION.MORE_TO_COM%

Figure 6 graphically depicts the general form of the
Host-DBP interaction occurring during the SEND REQUEST and
RECV_RESPONSE procedures. Note that each DBP request module
is prefixed by the "APPLICATION ID" and "REQUEST ID". This
four-byte prefix is inserted by the SEND REQUEST procedure.
The prefix need not be placed within the request module
itself. A list of the valid machine codes and formats for
request and response modules may be found in the DBP

Reference Manual[l0].

The Data Link Sub-Layer

The data 1link sub-layer is composed of the two
operations "READ BLOCK" and "WRITE BLOCK". Data "blocks"
may be viewed as the error-free transfer medium used during

I/0 with the DBP. A Cyclic Redundancy Check (using the

34
CRC16 polynomial[ll]) has been implemented so that the data
within the block is re-transmitted if an error is detected
during transmission. The format of the two data 1link

procedures is shown below :

Function Arguments Description

READ BLOCK BLOCK Block of data to read from DBP
NBYTES Number of bytes to read
NBYTES RECV Number of actual bytes read

(including header, data, and

trailing bytes)

BASE Base address for I/0
OFFSET Offset from BASE
WRITE BLOCK BLOCK Block of data to write to DBP
NBYTES Number of bytes to write
BASE Base address for I/O
OFFSET Offset from BASE

The BASE and OFFSET arguments are added together(by
first multiplying the BASE times 16) to form the complete
address for I/O purposes. The data link layer routines are
activated several times within each of the
application/session layer routines: this is due to the PCB,
PCB vector and request/response data area accesses which

need to take place within the application/session layer.

35
The Physical Link Sub-Layer

The physical link layer is the protocol 1layer closest
to the DBP. It represents the actual serial I/O on the
channel. At this level, there is no error correction. For
correct operation it 1is imperative that the TTY port and
channel be configured correctly, otherwise ambiguities are
sure to occur. Figure 7 displays the appropriate
communications parameters which need to be set for the VAX.
The physical 1link 1layer is represented by two procedures
"Q INPUT" and "Q OUTPUT"(The VMS operating system assigns
queues to each port[12]). The following table summarizes

the format for the "Q INPUT" and "Q OUTPUT" operations:

Function Arguments Description

Q INPUT BYTES Byte array received from DBP
NBYTES_ RECV Number of received bytes

Q_ OUTPUT BYTES Byte array to be sent to the DB
NBYTES Number of bytes to be sent

THE SPP THREADED DATA STRUCTURE

36
The DBP Service Port Protocol uses a simple memory

mapped I/O scheme to handle the DBMS control and application

functions. The host and DBP communicate by addressing the
same section of DBP memory. The core of this scheme is
represented as the PCB (Parameter Control Block) Vector.
This vector contains pointers to the control and application
address blocks. Depending on the type of DBMS function to
be performed (control or application) the DBP commands are
sent using the appropriate I/0 addresses. All addresses are
specified in a base:offset (4 bytes) format. Access to the
data areas, whether the data is request or response data, is
obtained by 'threading' through the PCB Vector and specific

PCB (see figure 8).

OPERATION OF SPP

This section defines the actual operation of SPP in the
implementation. The protocol should be used at the
application/session layer level, that is, using the two
session procedures "“SEND REQUEST" and "RECV_RESPONSE". The
procedure for successfully communicating with the DBP is

shown below :

Program Procedures Activated Description

DBPSTART * INIT COMM Initialize communications

CREATE_CONTROL Create control session

37

CREATE _APPLICATION Create application sessio
.communicate... INIT_ COMM Initialize communications
SEND_REQUEST Send request module
RECV_RESPONSE Receive response module
DBPSTOP INIT COMM Initialize communications
DELETE_APPLICATION Delete application session
DELETE_CONTROL Delete control session

SPP UTILITIES

SPP contains two primary utilities which are useful in
conjunction with the protocol operation. The two available
utilities are tracing and performance monitoring. "“Tracing"
refers to a map containing detailed data transmission
information including snapshots of the PCB Vector and
Control/Application PCBs. The entire handshaking sequence
within SPP may be studied with the aid of the trace utility.
"Performance Monitoring" refers to the collection of certain
execution statistics during host-DBP transmissions. By
monitoring the DBP, the software analyst may study both the
effect of SPP on VMS and the elapsed time during host-DBP

requests and responses.

38
Both utilities may be used within any of the three SPP

layers. The depth of trace and performance information may
therefore be set by the analyst if only a subset of the SPP

operations require monitoring.

The Trace Utility

A trace facility has been designed into SPP so that all
Host-DBP communications may optionally be monitored. The
trace output may be re-directed to any logical output unit
including the terminal, if desired. Tracing may be

accomplished by using the following two routines :

1. TRACE_START(UNIT) where UNIT = 1logical output file

unit

2. TRACE_STOP

Snapshots of the PCB Vector and PCB are displayed on

the trace output to aid the analyst. Appendix B displays

all communications that transpire during the
"CREATE_CONTROL" and "CREATE APPLICATION" procedures
(activated when DBP_START is called). For further

information on interpreting the trace see the DBP Operations

Manual[13].

The Performance Monitoring Utility

39
The analyst may wish to invoke the performance

monitoring facility when using the other routines. The

statistics that are currently monitored are listed below :
1. Elapsed Clock time
2. Elapsed VAX CPU time
3. Number of VMS buffered I/O requests
4. Number of VMS direct I/0 requests

5. Number of VMS page faults

The following two routines may be used to obtain the

above statistics :
1. PERFORM_START

2. PERFORM_STOP(CLOCK,CPU,BIO,DIO,PAGE) - where each
argument directly corresponds to each item listed

above.

One of the purposes of the data base machine is to
enhance the performance of the host machine by allowing a
back~-end data base machine to exercise many
time-consuming data base management chores normally
assumed by the host. The addition of the performance
monitoring utility is thought to be essential(along with
the trace utility) in maintaining a flexible front-end to

the data base machine.

40
LIMITATIONS OF SPP

SPP is currently fully operational using a 9600 baud
physical 1link to the DBP service port. SPP is limited in
that only one host may be used at any one time. It should
be realized, however, that several host application sessions
may be instantiated permitting multiple host simulation

studies if desired.

In the future, Intel 1is planning on supporting the
Ethernet 1link between multiple hosts and the DBP. Ethernet
is a hardware communications package composed of a co-axial
cable (connecting two or more hardware devices together) and
an interface for each device. The Ethernet environment
forms a local area network. Since the Ethernet hardware is
attached to the high-speed buses in the computers, a very
high-speed access rate to the DBP will be possible. The
extensive host 1link protocol[14] (corresponding to the
recent ISO protocol standard) will be used with Ethernet.
The Ethernet implementation will permit fast DBP access
which will be essential for multiple-user and embedded DBMS

applications.

RESULTS

SPP has been implemented so that it may be separated
from the HILDA system for use in other research efforts.
The construction of a machine-independent protocol was

considered important since the data base machine may be

41

connected -to a wide variety of hosts. The essential machine
dependencies in SPP are clearly marked to aid the

implementor in a non-DEC computer environment.

The functional, layered design of SPP supports the
concept of extensibility so that an individual may easily
make modifications and enhancements to the existing

implementation.

Finding bugs in the protocol software during
development was often quite difficult, and necessitated the
creation of an extensive tracing mechanism. The trace
output including 1I/0 sequences and PCB snapshots proved to
be indispensible in spotting design errors in the protocol

software.

The performance evaluation tool is very useful: one
should note, however, that the statistics gathered refleét
different aspects of VMS overhead, and not DBP overhead.
That 1is, there are no commands that may be sent to the DBP
which request statistical information that the DBP has
compiled during internal processing. Intel does include an
event log capability; however, this should be treated as an
accounting function and not a performance function. In the
future, Intel may want to consider including a set of
performance commands in their command repertoire. It is
inevitable that the data base machine users will want this

type of capability.

42

The author has gained a much greater appreciation for
communications protocols after having written one. The
various aspects of host-slave synchronization and error
correction go unnoticed to all except the implementor. This

is as it should be.

CHAPTER VI

LAYER 2 : A SEMANTICS SPECIFICATION PACKAGE

A DBP Semantics Specification Package for the Intel
Data Base Processor(DBP) is defined within this chapter.
DBPSSP serves as a collection of cross-assembly tools that
allow the analyst to assemble request blocks on the host
computer for passage to the DBP. The assembly tools may be
effectively used in conjunction with a DBP-compatible data
communications protocol to form a query processor,
precompiler or file management system for the data base
processor. The SPP protocol, as defined in the previous
chapter, is used within HILDA. It is important to note that
even though DBPSSP may be used with SPP, the assembly
primitives and procedures within DBPSSP are independent of
SPP. That is, another data communications protocol may be
effectively used with DBPSSP if necessary. The source
modules representing the components of DBPSSP are fully

commented and included as Appendix C.

43

44
AN OVERVIEW OF DBPSSP

DBPSSP is a package containing procedures which are
used on the host computer to construct request modules that
are to be sent to the Intel DBP. DBPSSP functions as a
cross assembler in that Intel DBP "machine code" is
assembled on the host computer and then directed to the data
base machine for execution. Each request module sent to the
DBP is of the form shown in figure 9. Every module contains
an arbitrary number of commands. A command is always

composed of exactly three primary sections:

1. Opcode Byte - the operation to perform on the DBP

(fetch, store, define database, etc.)

2. Parameters/Data - parameters and data which relate to

the operation being performed.

3. Terminator Bytes - two bytes which represent the end
of the current operation which is to be performed by

the DBP.

The following sections outline the capabilities and
suggested usage for the DBPSSP component modules. DBPSSP
should be thought of as a collection of procedures(or
subroutines) that permit the software developer to easily
construct data base requests to the 1Intel DBP. In this
manner, the analyst is free to develop a flexible front-end
interpreter or compiler to the data base machine. Some

-

highlights of DBPSSP are as follows:

45

Relative and Absolute Offsets - When assembling machine
code for the DBP, it is necessary to "place"” the code at
the proper offset within the request module. In many
cases, one may build the request module sequentially
from start to finish. This sequential mode of
assembling is termed ‘"relative" offsetting, since the
current assembled code is simply "tacked on" to the
previously assembled code. One may choose, however, to
assemble code at a specific offset within the command
block. This random mode of assembling is termed
"absolute" offsetting. The mode used by the software
developer depends on the overlying front-end driver
accessing the assembly tools. A particular parsing
method(for a query language, for instance) used for
constructing a driver may dictate the use of one offset

method over another.

Primitive and High-Order Procedures - DBPSSP is composed
of a set of general primitive procedures and a set of
high-order procedures which are based on the primitives.
The high-order procedures are similar in appearance to
assembler mnemonics for a given microprocessor: they

have short names and contain few operands.

Macro Capability - Since DBPSSP is a set of procedures,
it is straightforward and useful to develop
parameterized procedures which access the fundamental
DBPSSP procedures. This feature plays a role similar to

the "macro" capability found in many assemblers.

46
THE COMPONENTS OF DBPSSP

DBPSSP is composed of a minimal set of general
primitives and a set of high-order procedures. Each set is
divided into "Control" modules and "Assembly" modules. The
control modules effect the data communications options,
while the assembly modules are pure assembly directives
pertaining specifically to the construction of the command
blocks. The control modules are discussed in the previous
chapter. Modules that are dependent on the specific data
communications protocol used are denoted "(D)" next to the

respective module name. Each module set is depicted below:

PRIMITIVES

INIT COMM(D) - initialize DBP communications
DBP_SEND(D) - send a request module to the DBP
DBP_RECV(D) - receive a response module from the DBP
TRACE_START(D) - start tracing

TRACE_STOP(D) - stop tracing

PERFORM_START - start performance monitoring
PERFORM_STOP - stop performance monitoring(gather
statistics)

DBP_BEGIN - start to assemble a command block
DBP_BITS BEGIN - start bit masking operations
DBP_BITS - perform logical 'or'ing of bits
DBP_BITS_END - end bit masking operations

DBP_BYTES - assemble an ASCII string

47

DBP_INTEGER - assemble a 1,2, or 4 byte integer

HIGH-ORDER PROCEDURES

INIT(D) - Initialize DBP communications

SEND(D) - send the built request module to the DBP
RECV(D) - receive a response module from the DBP
TRON(D) - start trace

TROFF(D) - stop trace

PRON - start performance monitoring

PROFF - stop performance monitoring(gather statistics)
START - Start encoding a command block

TERMINATE -~ Add the two terminator bytes to the command
block being constructed.

BITSB - begin bit masking(relative offset)

BITS - logical 'or' on command block(relative offset)
BITSE - end bit masking(relative offset)

BITSB A - same as 'BITSB'(absolute offset)

ASC - assemble an ascii string(relative offset)

ASC_A - same as 'ASC'(absolute offset)

INT1 - assemble a l-byte integer(relative offset)
INT1_A - same as 'INT1l'(absolute offset)

INT2 - assemble a 2-byte integer(relative offset)
INT2 A - same as 'INT2'(absolute offset)

INT4 - assemble a 4-byte integer(relative offset)

INT4 A - same as 'INT4' (absolute offset)

48

Details on using the above procedures may be found in

the source which is included as Appendix C.

THE ASSEMBLY PROCESS

Figure 10 displays the assembly process occurring for a
"REMARK <HOST> <HELLO>" DBP command. It 1is assumed in
figure 10 that the user has developed a parsing method which
will activate the semantic assembly primitives within DBPSSP
(START,INT1,ASC, and SEND) when the REMARK command 1is
encountered. A more substantial program is presented in
Appendix D that performs the conceptual DBP operations
listed below (variable arguments are bracketed for

identification):

1. SUBMIT KEYS <ADMIN>

Submit the ADMIN key to the session keyring.

2. DEFINE DATABASE <TESTING>

Define a new database called TESTING.

3. KEEP DATABASE <TESTING>

Make the database TESTING a permanent database.

4. DEFINE FILE <FILEl> <DBPSYS>
Define &a new file called FILEl on the system

disk (DBPSYS).

&

49

5. DEFINE SCHEMA <INT1> INT*4 <INT2> INT*4 <INT3> INT*4
<FILEl>
Define a schema containing exactly three 4-byte
integers(INT1, INT2, and INT3) for the previously

defined file FILEl.

6. KEEP FILE <FILEl> <TESTING>

Make the file FILEl a permanent file.

7. LIST DATABASE <TESTING>
Show the schema descripton for files within database

TESTING

For further information on the command syntax see the
DBP Reference Manual[l0]. The program containing the above
commands is presented in two 1languages, FORTRAN 77 and
Pascal(in Appendix D). The FORTRAN program is coded using
the primitives, while the Pascal program uses the high-order
procedures. In general, the software designer will want to
use the high-order procedures since the high-order
procedures are more functionally precise with fewer
parameters. Note the relative compactness of the Pascal
program. The assembled modules and received DBP responses
obtained after having sent the completed requests to the DBP

are shown at the end of Appendix D.

RESULTS

50

The procedures within DBPSSP provide the developer with
all of the necessary tools to construct an interactive query
processor, compiler, or file management system for the Intel
DBP. It was useful to create the semantics procedures in a
strictly hierarchical fashion. Therefore, there are very
few low-level primitives and all of the high-order
procedures activate one or more of the primitives. This
designed hierarchical construct turned out to be extremely

powerful in forming new pieces of DBP "object code".

The merits of absolute vs. relative offsetting is
unclear. It was necessary to use only the relative
offsetting during the development of the query language
DBPQL(to be described in the next chapter). Relative
offsetting was simpler since it was not necessary to keep
constant track of the offset pointer. Also, since the
command line tokens and default arguments were all stored in
symbol tables, it was usually convenient to construct the
final request module all at once after having collected the
required module data. Absolute offsetting may be valuable
in a situation where the construction of symbol tables is

seen as being difficult or detrimental.

DBPSSP permits the definition of a complete semantics
specification associated with any given command or language
syntax that the developer may choose. For example, the
third layer of HILDA in conjuction with PARGEN specifies the
syntax for an intepretive 1language "DBPQL" and the
associated semantics defined wusing DBPSSP. DBPQL will be

discussed in the next chapter.

CHAPTER VII

LAYER 3 : A VIEW-ORIENTED QUERY LANGUAGE

A query language interpreter named "DBPQL"(Data Base
Processor Query Eanguage) has been designed to allow the
user to effectively and easily communicate with the data
base machine. DBPQL was built using PARGEN[15] and other
tools available within the MYSTRO system. The PARGEN
program stands for "PARser GENerator™ and will be discussed
in the next section. DBPQL is designed to be utilized by

both casual data management users and experienced users.

The DBPQL / DBP Conceptual Command Dichotomy

The DBP Reference Manual contains an in~depth
description of the format for the request and response
modules. The manual also includes a BNF-type "conceptual"
command scheme which relates to the DBMS functions using a
one-to-one mapping. That is, each internal DBP command may
be conceptually defined by an external user-oriented BNF

syntax production. The conceptual command is similar to a

machine instruction on a conventional machine in that it

51

52

represents the lowest, indivisible level of DBP

functionality.

DBPQL was designed with the idea that the vast majority
of data base machine users are not interested in exploring
the functionality at the level described in the reference
manual. This implies that there is a definite one-to-many
mapping of DBPQL query commands to Intel DBP conceptual
commands. The semantics afforded by each conceptual DBP
command are encapsulated within the file "DBPCMD.DAT" which
is included as Appendix E. This file includes a set of
procedures which are called by the semantics within the
DBPQL. grammar file. Each procedure represents a single
conceptual DBP command with the arguments necessary to build

the request block portion relating to that command.

A strong attempt was made to shield the casual user of
the data base machine from abstruse and often confusing

functions such as the following:
l. FREE - free a currently attached view from the
session.
2. ATTACH - attach a view to the user's session.
3. KEEP - make an entity (database,file,view) permanent.

4. SUBMIT KEYS - submit keys to the session's keyring.

53

5. DEFINE FILE - define a file within a given database.

These functions may be quite useful to the
sophisticated user, but they should be transparent to a user
who simply wishes to easily and quickly manipulate data.
Most of the functions such as those 1listed above are
required during data base management queries. In order to
make them transparent, their functionality is woven into the

semantic definitions of the relevant queries.

The data within the user's database is manipulated
through relational algebra which is performed on views[16].
Views in DBPQL are defined to be windows which map onto the
general set of data, therefore allowing the user to see only
the relevant data sections within the database. Views may
easily created from other views via relational commands such

as the following:

create project view CONNECTIVITIES from QUADS

including NODE1l NODE2 NODE3 NODE4

In this example, the user wishes to see only the
connectivity information present within the relation
"QUADS". This iﬁformation is extracted from items, "NODEl",
"NODE2", "NODE3", and "NODE4" and a new view named

"CONNECTIVITIES" is created in the process.

54

The advanced user of the data Dbase machine is
accommodated through the use of "options". Options permit
the experienced user to be specific about certain database
and relation creation parameters, such as internal page
size, variable item area size within files, and allocation
sizes. The inexperienced user can simply assume the

defaults in most cases and not be unduly affected.

In the following sections within this chapter, the
method which is used to develop DBPQL will be shown. This
same method may be applied in other research efforts to
develop an entirely different high-level user interface.
The first section describes PARGEN, a programming tool used

to develop the syntax and semantics of DBPQL.

PARGEN

PARGEN stands for PARser GENerator and 1is a program
contained within the MYSTRO[15] system developed at the
College of William and Mary. As its name implies, PARGEN is
used to develop(or generate) compilers and query processors
which contain parsers. PARGEN expects two inputs before it

can execute:

1. Grammar File - contains the syntax and semantics for
the language to be generated. The syntax is
specified in terms of BNF (Backus-Naur Form)

productions. The semantics are written in Pascal

55

directly following the syntax production to which

they are related.

2. Skeleton Compiler or Query Processor - contains a
minimal language compiler/query processor which has
embedded tags to aid PARGEN in the correct insertion

of certain variables and the synthesize case

statement. The case statement 1is used during the

parsing phase to activate the semantics associated

with a specific rule being fired.

As output, PARGEN produces the new compiler/query
processor which contains everything necessary to correctly
parse the user's particular source program. PARGEN also
produces the parse tables which are used by the

compiler/query processor during the parsing phase.

It should be noted that PARGEN can handle certain
grammar ambiguities such as shift-reduce and reduce-reduce
conflicts which occur regularly when designing new
languages. In addition, productions may contain semantic
conditions which must be true for the production to be
applied. These semantic conditions may be used to resolve a
given reduce-reduce conflict in the user's grammar. The
class of grammars that can be handled by PARGEN is the

NQLALR(1l) typel[l17].

The execution of PARGEN may best be portrayed with

56

an

example. An arithmetic expression grammar is shown as an

example of the grammar input file to PARGEN:

?ALL
?CRUSHER
?ERC
<GOAL> ::= <EXPR> <EOLN>
WRITELN('THE ANSWER IS = ',SSTACK[MP].IVAL):

<EXPR> ::= <EXPR> + <FULL TERM>

SSTACK[MP].IVAL := SSTACK[MP].IVAL + SSTACK[SP].IVAL;
<EXPR> ::= <EXPR> - <FULL TERM>

SSTACK[MP].IVAL := SSTACK[MP].IVAL - SSTACK[SP].IVAL;
<EXPR> ::= <FULL_TERM>

<FULL_TERM> ::= <TERM>
<FULL_TERM> ::= + <TERM>
<FULL_TERM> ::= - <TERM>

SSTAEK[MP].IVAL := -SSTACK[SP].IVAL;

<TERM> ::= <TERM> * <FACTOR>

SSTACK[MP].IVAL := SSTACK[MP].IVAL * SSTACK[SP].IVAL;
<TERM> ::= <FACTOR>

<TERM>

::= <TERM> / <FACTOR>
SSTACK[MP].IVAL := SSTACK[MP].IVAL DIV SSTACK[SP].IVAL;
<FACTOR> ::= <PRIMARY> ** <PRIMARY>
<FACTOR> ::= <PRIMARY>»
SSTACK[MP].IVAL := SSTACK[SP].IVAL;
<PRIMARY> ::= <NO>
<PRIMARY> ::= (<EXPR>)
SSTACK[MP] := SSTACK[MP+1];

The semantic text is able to "pick off" the .appropriate

command/source line tokens by accessing the semantics stack

which is maintained in the compiler. The semantics stack

variable "SSTACK" may be referenced as follows:

Suppose that the user types in the expression: 2*34

57

One production that would fire during the parsing of this

expression would be:

<TERM> ::= <TERM> * <FACTOR>

SSTACK[MP].IVAL := SSTACK[MP].IVAL * SSTACK[SP].IVAL;

Note the semantics for this production rule. Three items

are expected on the top of the stack:

Stack

<FACTOR> = 34 -9

* fm———— is reduced to --> <TERM> = 68
<TERM> = 2 =9

Through the semantics, the three stack items are
replaced by the result of the multiplication. The variable
"MP" refers to the left-hand side production symbol(LHS),
and the variable "SP" refers to the 1last token in the

right~hand side(RHS):

<FACTOR> SSTACK[SP] or SSTACK[MP+2]
* SSTACK[SP+1] or SSTACK[MP+1]
<TERM> SSTACK[SP~2] or SSTACK[MP]

The above expression grammar, when run through PARGEN,
will produce an expression evaluator program. The evaluator
will ask the user for a given arithmetic expression, and
then produce the result. Note that this rather compact

grammar can handle quite sophisticated input "such as the

58

following :
=> 2%(3 +4)/(3**(3*(4+1)) + 1)

The order of operator precedence is contained within
the proper "parsing order" inherent within the syntax

productions.

For further in depth information on PARGEN reference
the PARGEN User's Manual[l5]. 1In the reference manual there
are several other options which have not been mentioned

here.

AN OVERVIEW OF DBPQL

DBPQL(Data Base Processor Query Language) has been
designed and developed with the aid of PARGEN. The primary
purpose of DBPQL is to allow the user a simple and flexible
access tool in communicating with the 1Intel Data Base
Machine. Since DBPQL is intimately related to PARGEN, a
system developer maintains the flexibility to easily create
an entirely new query grammar or modify the existing one.
As the needs of the data base machine users change, the
developer may change and adapt the query processing language

accordingly.

DBPQL is entirely "view-oriented", as the chapter
heading suggests. This means that all data to be placed

into or retrieved from the database is done via a view. The

entire

59

procedure necessary to work with DBPQL may be best

described using a. sequence of steps:

Create a database - The database will hold the data

which is to be defined and transformed later.

Create a relation - A relation is similar to a table
with a set of rows(tuples) and
columns (attributes,items). The relation identifies
an underlying table which represents the "structure"
within the database. There may be many relations
within a single database. When one creates a
relation, an "identity" view is immediately assigned
for that relation. When one 1is "looking" at the
identity view, one is viewing the entire relation as
originally defined.

p
Create a view - A user will inevitably wish to 1look

at the relation(s) in a different way than they were
originally defined. Relational algebra is used(the
syntax of which will be defined later) to aid in
viewing the data differently. Through the use of
relational algebra the user may create views upon
other previously defined views. The identity view is
considered to be the base view upon which all other
views are constructed. Data may be henceforth
retrieved and stored by directly accessing an

[

appropriate view.

60
4. Display a view - Display a given view in tabular

form.

5. Load a view - Load data into a given view. It should
be noted that data may be loaded not only into the
identity view, but also into a view that was created

from other views.

6. List information - Provide a 1list of information

about views and databases.

7. Trace - Trace the encoding and decoding of blocks

to/from the DBP.

8. Performance Monitoring - Measure the performance of

given DBP operations.

9. Delete a view - Delete a view that 1is no 1longer

needed.

.10. Delete a relation - Delete a relation that 1is no

longer needed.

11. Delete a database - Delete a database that is no

longer needed.

A view may seen to be analogous to a window(either in
the real world or as in computer graphics). One is actually
sectioning off a particular part of the world of data(or
database) and using this modular new section for further

communications.

61
THE DBPQL GRAMMAR

DBPQL is a context-free query language which is
represented in the BNF form specified by PARGEN. The
complete grammar file is included in this thesis as Appendix
F, however, a more concise form is listed below(without

semantics):

1. <CREATE_DATABASE> ::= CREATE DATABASE <DBNAME>

2. <CREATE RELATION> ::= CREATE RELATION <RELNAME> IN

<DBNAME> USING SCHEMA <SCHEMA> <OPTIONS>

3. <CREATE_CONNECT_VIEW> HEES CREATE CONNECT VIEW
<NEW_VIEW> FROM <SOURCE_VIEW1> <STRING_PTR>

<SOURCE_VIEW2>

4. <CREATE_JOIN VIEW> ::= CREATE JOIN VIEW <NEW_VIEW>

FROM <SOURCE_VIEW1> <ITEM1> <SOURCE_VIEW2> <ITEM2>

5. <CREATE _ORDER VIEW> ::= CREATE ORDER VIEW <NEW_VIEW>

FROM <SOURCE_VIEW> <ITEMS...> <DIRECTION>

6. <CREATE_PROJECT_VIEW> s 3= CREATE PROJECT VIEW
<NEW_VIEW> FROM <SOURCE_VIEW> [INCLUDING 9 EXCLUDING

] <ITEMS...>

7. <CREATE_SELECT_VIEW> s:= CREATE SELECT VIEW

<NEW_VIEW> WHERE <WHERE CLAUSE> <OPTIONS>

62
8. <DELETE VIEW> ::= DELETE VIEW <VIEW>

9. <DELETE RELATION> ::= DELETE RELATION <RELATION>
10. <DELETE DATABASE> ::= DELETE DATABASE <DATABASE>
11. <DISPLAY> ::= DISPIAY <VIEW>
12. <HELP> ::= HELP [<DBPQL_COMMAND>]

13. <INPUT> ::= INPUT

14. <LISTDB> ::= LISTDB <DATABASE> ¥ ALL

15. <LISTDBS> ::= LISTDBS

16. <LIST VIEW> ::= LISTVIEW <VIEW>

17. <LIST VIEWS> ::= LISTVIEWS

18. <LOAD> ::= LOAD <VIEW> <ITEMS_TO LOAD>
19. <PERFORMANCECOMMAND> ::= PERFON 1 PERFOFF

20. <TRACE_COMMAND> ::= TRACEON 9 TRACEOFF

Once a view has been created, the user may either
display the view(using DISPLAY) or load data into it(using
LOAD). The structure of the database and views may be shown
using the LISTVIEW and LISTVIEWS commands. Appendix G
contains an actual DBPQL/user dialog during the creation of
a finite-element model database. Also shown in Appendix G

is the function of the” (TRACEON,TRACEOFF) commands which

63

permit an optional display of the request and response
modules that are being transmitted between the host and the
data base machine. The trace commands enable the developer
to easily verify the command encodings and the proper

interpretation of the DBP responses.
The general form of a DBPQL query statement

When referencing the DBPQL grammar file in Appendix F,-
one will notice a consistent structure in the formation of
the syntax productions. This general structure 1is shown

below:

<QUERY> ::= <KEYWORD> <QUERY REST> <OPTIONS>

1. Start the encoding of the request module

2. Remove the command line tokens from the
symbol tables and call the appropriate
conceptual command procedures.

3. Send the request module to the DBP.

4. Process the response module

<KEYWORD> ::= XXXXXX

1. Initialize counter variables.

2. Set all defaults now.

<QUERY_REST> ::= <QUERY DEPENDENT ARGUMENTS>

64

1. Take the tokens from the semantics stack

and store them in the appropriate symbol tables.

<OPTIONS> ::= <OPTIONAL CLAUSES>

1. Usually involves setting flag variables

which override the default settings.

The inclusion of the "<OPTIONS>" production allows the
sophisticated user to tailor a specific database environment
to his needs. On the other hand, the casual user 1is not
forced to supply the system with complicated details, since

the details are optional.

RESULTS

The syntax of DBPQL is not unusual. There are many
examples of query languages whose syntax closely resembles
the DBPQL syntax. The unusual aspect of the DBPQL
development resides with the use of two concepts which will

be discussed in the following paragraphs.

The first concept is the parser generator. The parser
generator, PARGEN, used in forming DBPQL is considered to be
an integral, embedded part of the DBPQL system. PARGEN is

not to be used solely by the developer of the initial query

65

language. PARGEN is designed to accompany DBPQL(or another
language) if DBPQL is distributed, so that the end-users
have a choice in modifying or enhancing the grammar to suit
their 1local needs. Many of the data base management
packages currently available are gquite inflexible with
regard to <changes 1in syntax and semantics. Most of the
packages have "built-in" parsers. With the DBPQL research,
it 1is hoped that the utility of having the parser generator
and the query language together as a packaged system has

been shown.

The second concept is that of a rigorous semantics
specification. At first, the DBPSSP semantic procedures
were used directly in the grammar file. Then, after
designing several syntax productions, it became evident that
there was a cleaner method of accomplishing the task of
coding the semantics. The meaning(or semantics) of each DBP
conceptual command is captured in a one-to-one relationship
with a "conceptual procedure". The conceptual procedures
contain DBPSSP semantic procedures, while the grammar file
contains calls to the conceptual procedures. Implementing
the conceptual procedures seemed to make the task of
preparing a grammar file a simple one. Also, since many
different queries will contain the same semantics(such as to
attach and free session views), the grammar file is more

compact and comprehensible.

66

In developing the grammar file for DBPQL, it was
annoying to constantly have to invent new variables which
act as symbol tables during parsing. This meant that it was
necessary to modify the skeleton query processor to insert
the variable declarations. Perhaps the symbol tables ought
to reside on the DBP side inside a symbol table relation.
This would mean slower data access to the DBP-resident
symbol tables, but the independence of the grammar file and
skeleton query processor would be facilitated. In other
words, one would not have to modify the skeleton processor
to include the variable definitions for symbol table storage

and manipulation.

CHAPTER VIII

CONCLUDING REMARKS

First, some conclusions obtained from the current state
of the HILDA development will be discussed, then a few
future enhancements and research efforts stemming from the

current work will be outlined.

The portability of the HILDA components was seen as
being an important facet of the research. As more data base
machines become commercially available, the aspect of
portability of host software will become an important one.
To a greater extent, the very idea of a "database machine"
promotes the notion of machine independence of data base
software, since the data base machine serves as a separate
module which "plugs in" to any particular host. The machine
dependence of the database management functionality resides
in the modular data base machine, as opposed to a piece of

host-resident software.

The layered design of HILDA proved to be useful. By
dividing the entire functionality into separate(but
communicating) layers, the software design cycle time was
minimized. It was easy to concentrate on single modules

rather than having to constantly work with one huge program

67

68

unit. It should be noted that it was important to
completely test each layer individually before going to
implement the next higher one. It took a long time to
locate errors when they were due to a supposedly correct

lower layer.

When implementing the third 1layer, DBPQL, it was
amazing to notice how quickly the syntax and semantics for
various query commands could be generated. This speed in
design 1is derived from the flexiblility associated with the
semantics specification language and the integral parser
generator program. During the DBPQL development, it was
decided that instead of the multitude of currently available
programming languages, it would be nice if there existed a
single multi-purpose language skeleton driven by the syntax
and semantics data which could be stored in a manipulable
database file. The run-time symbol tables and synthesize
procedures could also be stored in the database. Some very
interesting initial work(albeit done with database software

) has been developed with respect to storing and
manipulating program text[18]. This data-driven language
could be the basis for interesting development as data base

machines become more prevalent.

The primary aim of the research was to develop a very
flexible syntgx/semantics interface to the data base
machine. It is the author's belief that HILDA is an example
of one such interface. It was important to design DBPQL
such that the casual user would be able to excercise the

data base machine and control his own databases. Too often,

69

with database administrators and complicated sub-schemas,
many computing environments shut out the user from the data
management process. The point is clear - a user should be
able to easily manage his own data. At the same time, there
should be an inherent functionality in a high-level
interface which supports the sophisticated user. If data is
shared among many users, the addition of integrity
constraints should be a made a simple task. The DBPQL
interpreter is successful as a user-friendly interactive
language and directly addresses these issues. Many of the
required low-level DBP conceptual functions are hidden - it
was really annoying to have +to manually attach and free

session views, for example.

With regards to future enhancements and modifications

to HILDA, there are several points to be made:

1. There is an interesting question that arises when
implementing some of the DBP conceptual commands:
"How should the tasks which may be assumed by either
the host or the DBP be distributed?". For instance,
there is a "LOOP WHILE" DBP conceptual command which,
when sent to the DBP, causes a conditional iterative
evaluation of the commands in the loop body. Is it
more efficient to let the DBP do this, or should the
iteration use the host CPU? Also, some of the symbol
table manipulation could be done on the DBP. Even
though this would be more inefficient than having the
symbol table in memory, the data abstraction features

of the DBP make it an attractive device for all kinds

70
of data manipulation. These are questions that are

unanswered and pose intriguing research problems.

Much work needs to be done 1in the wuser interface
area. For example, the help facility with DBPQL is
typical of many facilities currently resident within

other interactive data base management systems. What

happens if the user types in, "CREATE
<carriage-return>". Normally this query would
generate a syntax error in the parsing process. It

might be interesting to assign certain ‘“help
procedures" which would fire when a particular state
has been reached within the automaton generated from
the grammar[19]. Then, the system might be able to

respond with "What should I create ?".

Intel is planning on shrinking the size of the DBP so
that it may be inserted into a given microcomputer as
a single-board disk controller. This idea of an

"intelligent" disk controller is very powerful:

1. Microcomputers incorporating this type of
intelligent mass storage control would be able
to perform reasonably complex data management
tasks. This small-scale data management
capability will have far-reaching effects
especially when considering a 1local area

network environment using Ethernet.

71

Current file i/o mechanisms in programming
languages reflect the underlying disk
controller architecture. That 1is, one may
read and write sequentially or randomly. With
the new content-addressable disk controller,
programming languages will change to reflect
the new capabilities. Many new forms of data
abstraction, such as "relation","tuple", and
"view" will appear within the new languages as
standard data types. Instead of using the
simple i/o to which we are presently
accustomed, we may be routinely performing
relational commands on variables previously
declared as type "view". The onset of the
intelligent disk controller will lend credence
to the higher level abstractions in language
designs. Most languages do not presently have
these abstractions as embedded features
because of the performance overhead associated
with the mappings of the high-level functions

to the currently available controllers.

We currently think of the topics, "File
Management" and "Data Base Management" as

disparate. In reviewing the Intel DBP's

capability, one may see that these two topics
are one and the same. "Files" may be either

structured or unstructured, allowing for all

kinds of powerful relational- operations.

72
"Databases" are simply collections of
"files"(or relations). Unstructured files are
very similar to files as we presently use
them. The reason behind labelling HILDA as a
data abstraction system rather than a data
base management system lies with this idea of
file/database homogeneity. As users of
database hardware, we should be able to think

of data abstractions in our programs, instead

of "databases", "views", "directories", and
"files". How will the introduction of the
data base machine effect the file management
functions within an operating system ? What
types of new functions should be present to
assist the wuser 1in managing data ? These

topics have yet to be explored.

4. The problems of data integrity and distributed data
will continue to be as much of a problem with data
base machines as they have been with data base
software. Data base machines seem to be begging for
a distributed environment, especially as the data

base machine prices decrease.

Much more work needs to be done in the area of data
base machines. It is hoped that the development of HILDA
and the notes within this thesis have served a useful
contribution to the search for new methods of data

management and abstraction using data base machines.

GLOSSARY OF ACRONYMS

BNF - Backus Naur Form. A formal method of specifying
the syntax for a given language.

CRC =~ Cyclic Redundancy Check. CRC byte(s) are built
from a packet of data which is transmitted from one
computer to another. These byte(s) are also built on
the computer receiving the data packet. The two CRC
byte groups are checked for equality. If the bytes
are not equal then the original data packet is
re~transmitted from the originating computer. CRC1l6
is a special case of cyclic redundancy checking which
uses a 16-bit word(two bytes).

DBMS - Data Base Management System. A system used for
storing, retrieving, and manipulating data.

DBP -~ Data Base Processor. Intel's data base
machine(processor).

DBPQL - Data Base Processor Query Language. Top layer
within HILDA. An interactive view-oriented query
language for the Intel DBP.

DBPSSP - Data Base Processor Semantics Specification
Package. Middle layer within HILDA. This package is
a group of procedures which enable users to easily
form DBP request blocks.

HILDA - High Level Data Abstraction System. A system
composed of three layers(SSP, DBPSSP, and DBPQL)
which allows a user to use the functionality of the
Intel DBP. The main emphasis of HILDA is the flexible
formulation of syntax and semantics associated with a
given high-level language.

ICASE - Institute for Computer Applications in Science
and Engineering.

IPAD - Integrated . Programs for Aerospace Vehicle
Design.

73

lo.

11.

12.

13.

14.

15.

16.

74

MYSTRO - A collection of tools for language
development conceived at the College of William and

Mary.

PARGEN - Parser Generator. A program permitting the
user to create a compiler or query processor by
specifying a skeleton compiler/processor and a grammar
file.

PCB - Parameter Control Block. A block of DBP memory
which includes pointers to data buffers and specific
protocol information. Used within the SPP protocol
software.

RIM - Relational Information Manager. A relational
database management system built within the IPAD
project.

SPP -~ Service Port Protocol. The bottom layer within
HILDA which allows the host computer(VAX 11/780) and
DBP to communicate with each other.

VAX - Digital Equipment Corporation's VAX
minicomputer. A VAX 11/780 was used to develop HILDA.

VMS - Virtual memory management operating system used
on the VAX minicomputer.

APPENDICES

APPENDIX A - SPP Source

SPP has been implemented using VAX VMS FORTRAN 77.
The 'SPP' program module specifies implementation notes
which refer to certain computer dependencies of SPP.
Subroutines which contain at least one source of VAX/VMS
machine dependence are flagged with '*** MACHINE DEPENDENT

***' at the head of the routine.

®

§ @typeq
PROGRAM SPP

I

PURPOSE :

'SPP' IS A SERVICE PORT PROTOCOL TO BE USED IN
ACCESSING THE INTEL DBP

ARGUMENTS :

NONE
DIAGNOSTIC TRACE OPTION FOR PROTOCOL :
USE TRACE START AND TRACE STOP
PERFORMANCE MONITORING OPTION :

USE PERFORM START AND PERFORM STOP

SPP FUNCTIONAL COMPONENTS :
PROGRAMS
DBP_START - USED TO START I/O WITH THE DBP.
SPP - THIS PROGRAM IS JUST A SAMPLE PROGRAM
WRITTEN TO SHOW THE CORRECT FORM
FOR SPP OPERATION.
DBP STOP - USED TO END I/O WITH THE DBP.

PROTOCOL: SUBROUTINES :

INIT COMM - INITIALIZE COMMUNICATIONS WITH DBP

END COMM - END COMMUNICATIONS WITH DBP

CREATE CONTROL - CREATE A DBP CONTROL SESSION

DELETE CONTROL - DELETE THE DBP CONTROL SESSION

CREATE APPLICATION- CREATE A DBP APPLICATION SESSION

DELETE_APPLICATION- DELETE THE DBP APPLICATION SESSION

RECV_RESPONSE - RECEIVE A DBP RESPONSE

SEND REQUEST - SEND A REQUEST TO THE DBP

READ BLOCK - READ A DATA BLOCK FROM THE DBP

WRITE BLOCK - WRITE A DATA BLOCK TO THE DBP

Q _INPUT - RECEIVE A BYTE BUFFER FROM THE DBP

Q OUTPUT - SEND A BYTE BUFFER TO THE DBP

LOWL6 - RETURN LOW ORDER BYTE FROM 16-BIT WORD

LOW32 - RETURN LOW ORDER BYTE FROM 32-BIT WORD

HIGH16 - RETURN HIGH ORDER BYTE FROM 16-BIT WORD

HIGH32 - RETURN HIGH ORDER BYTE FROM LOWER-HALF
OF 32-BIT WORD

GLUE - RETURN A 16-BIT WORD FORMED FROM 2 BYTES

UTILITY SUBROUTINES

TRACK - IF TRACE MODE HAS BEEN ENABLED, DISPIAY THE
TWO DATA STRUCTURE FORMATS(PCB &

eNeXeNoNoNeNoNoKeNoNoRoNo oo NoRoNeNo N o NoXo o Koo N RoNo N oo R No N N o NoNo oo N o Ne No e No Ko o oo No o No N o o Ko N e N e

anNnooooonNoOOOOOOOOOONOO0O0NNOOA00O0N0AN0NNNNAONNNNNOANNANNNNONANN

PCB VECTCR)

TRACE _START - ENABLE TRACE MODE
TRACE STOP - DISABLE TRACE MODE
PERFORM START — ENABLE PERFORMANCE TRACING

PERFOHW:S’IOP DISABLE PERFORMANCE TRACING

MACHINE DEPENDENCIES :

THIS SOURCE TEXT REPRESENTS A TESTED VAX/VMS
VERSION OF SPP.

SPP HAS BEEN IMPIEMENTED SO THAT THE MACHINE
DEPENDENCIES INHERENT WITHIN THE SOURCE TEXT
ARE CLEARLY MARKED TO AID THE IMPLEMENTOR IN
A NON-DBEC COMPUTER ENVIRONMENT.

THE FOLLOWING IS A LIST OF THINGS TO WATCH OUT FOR
IF A NON-DEC MACHINE IS BEING USED :

1.) THE FOLLOWING ROUTINES CONTAIN VMS MACRO CALLS
WHICH ARE USED MAINLY FOR TTY I/O PURPOSES :

ROUTINE DEPENDENCIES
INIT COMM LIBSCRC TABLE, SYSSASSIGN
Q INPUT SYSSQIGW

Q_OUTPUT SYSSQIOW

READ BLOCK LIBSCRC

WRITE BLOCK LIBSCRC

END COMM SYS$DASSGN

WHERE :

Initialize a table for further CRC16
calculations

LIBSCRC TARLE

LIBSCRC - Calculate CRC16 for a given ASCII string
SYS$SASSIGN - Assign an I/O channel

SYSSDASSGN - De-assign an I/0 channel

SYSSQIOW - Block I/O routine for serial 1/0

THE TYPES OF FUNCTIONS PRESENT WITHIN THESE
ROUTINES IS USUALLY FOUND WITHIN MOST OPERATING
SYSTEM SERVICE MANUALS.

2.) HEXADECIMAL VALUES FOR THE VAX ARE SPECIFIED AS
FOLIOWS :
'DE'X ‘FF'X etc.

THIS REPRESENTATION MAY DIFFER ON ANOTHER COMPUTER.

w
A

DATA TYPE 'BYTE' - ON THE VAX, THE MOST NATURAL WAY
TO REPRESENT PURE BYTE STREAMS IS USING THE DATA TYPE
'BYTE'. ON OTHER MACHINES, ONE MAY USE 'LOGICAL*1' OR
'CHARACTER*1'. KEFP IN MIND, HOWEVER, THAT CHARACTER
DATA IS GENERALLY STORE DIFFERENTLY(VMS CALLS THIS

A DESCRIPTOR TYPE).

4.) IDENTIFIER LENGTHS - THE FORTRAN VARIABLE NAME LENGTHS ARE
LONGER THAN MAY BE SUPPORTED WITH SOME FORTRAN COMPILERS.
THEY ARE LONG TO AID IN THE READING AND COMPREHENSION OF
THE SOURCE.

5.) 'INCLUDE' STATEMENT - MOST FORTRANS SUPPORT A METHOD FOR
INCLUDING/INSERTING A DISK FILE WITHIN THE SOURCE PRIOR
TO COMPILATION.

DATE:
APRIL 12, 1983
AUTHOR:

PAUL A. FISHWICK
KENTRON TECHNICAL CENTER
3221 NORTH ARMISTEAD RD.
HAMPTON, VA. 23666

(804)-865-3195

cEeNoNoRo N NoNo oo RoNoNo Ko Ko NoNo oo No No Ne No No Xe!

INTEGER*4 BIO,DIO, PAGEF
INCLUDE 'SPPCOM.TXT'

NOTE: THIS IS AN EXAMPLE USE OF 'SPP'. THE USER MUST
HAVE STARTED OCOMMUNICATIONS BY ACTIVATING THE PROGRAM
'DBPSTART' PRIOR TO THIS. THE FOLLOWING SET OF BYTES
REPRESENTS THE CONCEPTUAL 'DEFINE DATABASE <TESTING>'
DBP COMMAND. THE DIAGNOSTIC AND PERFORMANCE TRACING
OPTIONS HAVE BEEN UTILIZED.

oEoNeNoEoNoNoNe)

CALL TRACE START(9)

CALL INIT COMM

MODULE(1l) = '60'X

MODULE(2) = '07'X

MODULE(3) = '54'X

MODULE(4) = '45'X

MODULE(5) = '53'X

MODULE(6) = '54'X

MODULE(7) = '49'X

MODULE(8) = '4E'X

MODULE(9) = '47'X

MODULE(10)= 'FF'X

MODULE(11)= '00'X

CALL PERFORM START

CALL SEND REQUEST(MODULE,11,1,1,1)

CALI, RECV RESPONSE(MODULE,NBYTES RECV,1,MORE TO COME)
CALL PERFORM STOP(CLOCK,CPU,BIO,DIO,PAGEF)~
CALL TRACE STOP

CALL EXIT

END

o wnnn

C

C COMMON FOR SPP(SERVICE PORT PROTOCOL)

C
BYTE BYTES(1024), BLOCK(1024),MODULE(1024)
BYTE MODULE2(1024)

INTEGER*2 BASE, OFFSET, I0SB(4),NBYTES, NBYTES RECV
INTEGER*2 TTY CHANNEL

INTEGER*4 STATUS,CRC TABLE(16),;CRC

CHARACTER STRING*512

COMMON/CRCCOM/ CRC,CRC_TABLE

COMMON/COMM/ TTY CHANNEL

c
LOGICAL*4 MORE TO COME

c

C SYSTEM SERVICE PARAMETERS

c

C READ PARAMETERS
PARAMETER IO$M NOECHO = '00000040'X
PARAMETER IOSM PURGE = '00000800'X
PARAMETER IO$M TIMED = '00000080'X

PARAMETER IO$ TTYREADALL = '0000003A'X
C STATUS INDICATORS

PARAMETER SS$ NORMAL
C WRITE PARAMETERS ~

PARAMETER I0$ WRITEVBLK = '00000030'X

'00000001 'X

C
C DEBUG(TRACE) VARIAELES
C
INTEGER*4 UNIT
LOGICAL*4 DEBUG
COMMON/TRACECOM/ DEBUG, UNIT
DATA DEBUG/.FALSE./
PROGRAM DBP_START

|

START OPERATIONS FOR THE DBP
THIS INCLUDES ALIOCATING THE CHANNEL TO
BE USED FOR HOST <-> DBP COMMUNICATIONS

PROTOCOL: :

SERVICE PORT

;

APPLICATION

:

APRIL 12,1983°

oNeXoNo NN Ne o No NN Ro o No Ko N NoRoNoe o Ko o NP No Ko e

INCLUDE ‘'SPPCOM.TXT'

“

C SET UP COMMUNICATIONS
c
N PRINT *,'** START DBP COMMUNICATIONS **'

CALL TRACE START(9)
CALL INIT COMM

C
C CREATE OONTROL,APPLICATION SESSIONS
C
PRINT *,'** CREATING CONTROL SESSION **'
CALL CREATE CONTROL
PRINT *,'*¥ CREATING APPLICATION SESSION **'
CALL CREATE APPLICATION
c
CALL TRACE STOP
CALL EXIT
END
PROGRAM DBP_STOP
—

%
0n
o]

STOP OPERATIONS FOR THE DBP

ARGUMENTS s

NONE

;

SERVICE PORT

?&

APPLICATION

:

APRIL 12,1983

INCLUDE 'SPPCOM.TXT'

SET UP COMMUNICATIONS

000 o000 OONOON0NO0OONONN

PRINT *,'** START DBP COMMUNICATIONS **'
CALL TRACE START(9)
CALL INIT COMM

DELETE THE APPLICATION SESSION
AND CONTROL SESSION
(TERMINATE DBP)

nonNaonan

PRINT *,'** DELETING THE APPLICATION SESSION **'
CALL DELETE APPLICATION

PRINT *,'** DEIETING THE CONTROL SESSION **'
CALL DELETE CONTROL

CALL TRACE STOP
CALL EXIT

END

SUBROUTINE INIT COMM

*** MACHINE DEPENDENT ***

%

INITIALIZE COMMUNICATIONS PARAMETERS PRIOR TO ACTUALLY
TRANSMITTING DATA BACK AND FORTH

3

PROTOCOL

SERVICE PORT

?

APPLICATION

:

APRIL 12,1983

NaQQOQOOOOONNOONOO0O0N0N0O0N0N00Q0

INCLUDE ‘'SPPCOM.TXT'
INTEGER*4 SYSSASSIGN

IF(DEBUG) WRITE(UNIT,5)
FORMAT(' ** Initialize iDBP Cammnications **')

INITTALIZE A CRC-16 TABLE FOR ERROR DETECTION
(THE VAX 'CRC' MACHINE INSTRUCTION IS USED)

CALL LIBSCRC TABLE('120001'O,CRC TABLE)

ASSIGN AN I/O CHANNEL USING A TTY PORT

o0 aoooaovu 0

STATUS = SYS$ASSIGN(‘'REMOTE',TTY CHANNEL,,)
IF(STATUS.NE.SS$ NORMAL) THEN
WRITE(UNIT,300) STATUS

300 FORMAT(' Error,unable to assign the DBP I/O Channel'/,

X ' Status is ',28,/,' See : INIT COMM')

ENDIF
C
C SEND A CONTROL~C TO FLUSH THE TYPE-AHEAD BUFFER
C AND INITIALIZE DBP COMMUNICATIONS
C ,

BYTES(1) = '03'X

CALL Q OUTPUT(BYTES,1)

NBYTES RECV = 16

CALL Q INPUT(BYTES,NBYTES RECV)

RETURN

END

SUBROUTINE END COMM

C
C .
C *** MACHINE DEPENDENT ***

PURPOSE :
END QOMMUNICATIONS TO THE DBP. DEASSIGN CHANNEL.
ARGUMENTS :
NONE
PROTOCOL :
SERVICE PORT
IAYER :
APPLICATION
DATE :

APRIL 12,1983

OQAQ OO0 0O000000N0NO000AN0NAN

INCLUDE ‘SPPCOM.TXT'
INTBEGER*4 SYSSDASSGN

C .
C DEASSIGN THE PREVICOUSLY ASSIGNED CHANNEL
C
STATUS = SYSSDASSGN('ITY__CHANNEL)
IF(STATUS.NE.SS$ NORMAL) THEN
WRITE(UNIT,100) STATUS
100 FORMAT(' Error,unable to de-assign the DBP Channel'/,
X ' Status is ',z8,/' See: END COMM')
ENDIF
RETURN
END
SUBRCUTINE CREATE_CONTIDL
—

PURPOSE :

CREATE A CONTROL SESSION

NOTE : THIS IS THE FIRST FUNCTION TO BE PERFORMED
TO ACCESS THE DBP. THE 'MONITOR' BUTTON MUST
BE PUSHED PRIOR TO CALLING THIS ROUTINE.

ARGUMENTS :

eNeNeNoNo o Ko NoNo o Ne Ko Ro Ne e No R No o Ro N o X e!

APRIL 12,1983

?OOO

INCLUDE 'SPPCOM.TXT'
INTEGER*2 BASE CTRL,OFFSET CTRL

C
IF(DEBUG) WRITE(UNIT,5)
5 FORMAT(' ** Create Control Session **')
C
C RFAD THE PCB ADDRESS VECTOR
C
BASE = 'EROC'X
OFFSET = 0
CALL READ BLOCK(BLOCK,10,NBYTES RECV,BASE,OFFSET)
IF(DEBUG) CALL TRACK(BLOCK,0)
CALL GLUE(BLOCK(3),BLOCK(4),OFFSET CTRL)
CALL GLUE(BLOCK(5),BLOCK(6),BASE CTRL)
C
C READ THE CONTROL SESSION PCB
C

CALL READ BLOCK(BLOCK,43,NBYTES RECV,BASE CTRL,OFFSET CTRL)
IF(DEBUG) CALL TRACK(BLCCK,1)
IF(BLOCK(15).FQ.4) THEN
C HOST TO SEND 'ENABLE SERVICE PORT'
BLOCK(16) = '11'X
CALL WRITE BLOCK(BLOCK,43,BASE CTRL,OFFSET CTRL)
IF(DEBUG) CALL TRACK(BLOCK,1)
ELSE
WRITE(UNIT,100) BLOCK(15)
100 FORMAT(' Error, DBP''s Wait on Enable is not set.'/,
X ' DBP Status is ',z2'h')
ENDIF
c
C RETURN CONTROL TO THE DBMS
c
BYTES(1) = '47'X
BYTES(2) = 'OD'X
CALL Q OUTPUT(BYTES,2)
NBYTES RECV = 29
CALL Q INPUT(BYTES,NBYTES RECV)
RETURN -
END
SUBROUTINE CREATE APPLICATION

é

CREATE AN APPLICATION SESSION

ARGUMENTS :

:

PROTOCOOL: :

SERVICE PORT

oeNoNoNoNoRoNoNOoNo o RO RO RPN Ne]

;

%
5
:
2

:

APRII 12,1983

INCLUDE ‘'SPPCOM.TXT'

(@] QOOOOOOOO

IF(DEBUG) WRITE(UNIT,5)
FORMAT(' ** Create Application Session **')

PERFORM ‘'CREATE APPLICATION SESSION'

oNe MO

MODULE(1)="E4'X
MODULE(2)="'01'X
MODULE(3)="'FE'X
MODULE(4)="FF'X
MODULE(5)="'00"'X

CALL SEND REQUEST(MODULE,5,0,1,0)

RECEIVE THE APPLICATICN #

oNoXe!

CALL RECV_RESPONSE(MODULE,NBYTES RECV,0,MORE TO COME)
IF(DEBUG) THEN
WRITE(UNIT,200) (MODULE(I),I=1,NBYTES_REK3V)

200 FORMAT(' ** Create Application Response **'//,

X 16(1X,22.2))

ENDIF
C
C RETURN CONTROL TO THE DBMS
C

BYTES(1) '47'X

BYTES(2) 'OD'X

CALL Q OUTPUT(BYTES,2)

NBYTES RECV = 29

CALL Q INPUT(BYTES,NBYTES RECV)

RETURN
END
SUBROUTINE DELETE CONTROL

:

DELETE A CONTROL SESSION A
NOTE : THIS IS THE LAST FUNCTION TO BE PERFORMED
WHEN THE DBP IS TO BE STOPPED

]

Ll

o000 O0000000a

SERVICE PORT

IAYER :
APPLICATION
DATE :

APRIL 12,1983

eHoNe N NN sNoNoNoEoNoNo o N o Ne!

onNn 0

0

INCLUDE ‘'SPPCOM.TXT'

IF(DEBUG) WRITE(UNIT,5)
FORMAT(' ** Delete Control Session **')

PERFORM ‘TERMINATE DBP'
MODULE(1)="ED'X
MODULE(2)="FF'X
MODULE(3)="'00'X
CALL SEND REQUEST(MODULE, 3,0,1,0)
RECEIVE THE 'TERMINATE DBP' RESPONSE
CALL RECV_RESPONSE(MODULE,NBYTES RECV,0,MORE TO COME)
RETURN

END
SUBROUTINE DELETE APPLICATION

eEoNoNoNo N R Ko NoNo No oo XoNoNo N No o NoRo O N

PURPOSE :
DELETE AN APPLICATION SESSION
ARGUMENTS :
NONE
PROTOCOL :
SERVICE PORT
LAYER :
APPLICATION
DATE :

APRTI: 12,1983

aoQwn 0

INCLUDE 'SPPCOM.TXT'
INTEGER*2 BASE APP,OFFSET APP

IF(DEBUG) WRITE(UNIT,5)
FORMAT(' ** Delete Application Session **')

READ THE PCB ADDRESS VECTOR

BASE = 'EEOC'X

OFFSET = 0

CALL READ BLOCK(BLOCK,10,NBYTES RECV,BASE,OFFSET)
IF(DEBUG) CALL TRACK(BLOCK,O)

CALL GLUE(BLOCK(7),BLOCK(8),OFFSET APP)

CALL GLUE(BLOCK(9),BLOCK(10),BASE APP)

C
C CHECK THE INDEX FIELD FOR POSSIELE ERRORS
C
IF((BLOCK(1).GE.'AO'X).AND.
X (BLOCK(1).LE.'DF'X)) THEN
WRITE(UNIT,100) BLOCK(1)
100 FORMAT(' Error, Couldn''t Delete Application Session'/,
X ' Index Field(low) is ',z2,'h')
RETURN
ENDIF
c
C READ THE APPLICATION SESSION PCB
C

CALLREADBHH((BI.LIZK43NBYTESRECVBASEAPPOFFSEI‘APP)
IF(DEBUG) CALL TRACK(BLOCK,1)
IF(BLOCK(15).BEQ.7) THEN
C HOST TO SEND 'OK FIN'
BLOCK(16) = '05'X
CALL WRITE BLCEK(BILCCK,43,BASE APP, OFFSEI‘ APP)
IF(DEBUG) CALI, TRACK(BICCK,1)
EISE
WRITE(UNIT,200) BLOCK(15)
200 FORMAT(' Error, Application Session cannot be deleted.'/,
X ' DBP Status is ',z2'h')
ENDIF
C
C RETURN CONTROL, TO THE DBMS
C
BYTES(1) '47'X
BYTES(2) 'OD'X
CALL Q OUTPUT(BYTES,2)
NBYTES RECV = 29
CALIL Q INPUT(BYTES,NBYTES RECV)
RETURN -
END
SUBROUTINE RECV RESPONSE(MODULE, TOTAL BYTES,PCBTYPE,
X MORE TO COME)

PURPOSE :

RECEIVE RESPONSE MODULE FROM THE DBP
ARGUMENTS :

MODULE - RECEIVED RESPONSE MODULE

NBYTES - # OF BYTES IN RESPONSE MODULE RECEIVED
PCBTYPE TYPE OF PCB TO RECEIVE RESPONSE MODULE

0 -—> CONTROL PCB
1 --> APPLICATION PCB

a0 n00n0OOn0O0000a0

MORE TO COME - TRUE, IF THERE IS MORE DATA TO BE RECEIVED

AFTER THIS ROUTINE HAS BEEN CALLED

- FALSE, IF ALL DATA HAS BEEN RECEIVED FROM
THE DBP

PROTOCOL :

SERVICE PORT

APPLICATION

3

APRIL: 12,1983

oNoNoNoNo o NN No o No No No NoNo o o No N o N e

INCLUDE 'SPPCOM.TXT'

INTEGER*2 NSHGMENTS, BUFFERL_LENGTH, BUFFER2 LENGTH, PCETYPE
INTEGER*2 BUFFER] BASE,BUFFER2 BASE, BUFFERL OFFSET
INTEGER*2 BUFFER2_OFFSET, TOTAL BYTES -

C
C
C GET PCB ADDRESS VECTOR
C
IF(DEBUG) WRITE(UNIT,5)
5 FORMAT(' ** Receive Response **')
50 TOTAL BYTES = 0O
60 BASE = 'EROC'X
OFFSET = 0
CALL READ BLOCK(BLOCK,10,NBYTES RECV,BASE,OFFSET)
IF(DEBUG) CALL TRACK(BLOCK,0)
C
C LOOK AT THE INDEX FIELD
c

IF((BLOCK(1).GE.'A0'X).AND.
X (BLOCK(1).LE.'DF'X)) THEN

WRITE(UNIT,100) BLOCK(1)
100 FORMAT(' Error in RECV RESPONSE, Index(low) is ',z2, 'h')

RETURN -

ELSE IF ((BLOCK(l).EQ.'FF'X).AND.
X (BLOCK(2).EQ. 'FF'X)) THEN

IF(DEBUG) WRITE(UNIT,125)
125 FORMAT(' Error, iDBP is suspended. Index is FFFFh')

GO TO 9999

ENDIF
C
C RECEIVE RESPONSE USING CONTROL OR APPLICATION PCB ?
C
IF(PCBTYPE.EQ.O) THEN
CALL GLUE(BLOCK(3),BLOCK(4),0FFSET)
CALL GLUE(BLOCK(5),BLOCK(6),BASE)
ELSE
CALL GLUE(BLOCK(7),BLOCK(8),0FFSET)
CALL GLUE(BLCCK(9),BLOCK(10),BASE)
ENDIF ’
CALL READ_BHIZK(BI_LXI(,43,NBYTES_RECV,BASE,OFFSET)

IF(DEBUG) CALL TRACK(BLOCK,l)

C
C TEST THE DBP STATUS FIELD, FIRST
C
IF(BLOCK(15).EQ.7) THEN
c
C UPDATE THE PCB
Cc
BLOCK(16) =1
CALL WRITE BLOCK(BLOCK,43,BASE,OFFSET)
IF(DEBUG) CALL TRACK(BLOCK,l)
C
C RETURN CONTROL TO DBMS
C

0O 0o

C

BYTES(1) = '47'X
BYTES(2) = 'OD'X
CALL Q OUTPUT(BYTES,2)
NBYTES RECV = 29
CALL O INPUT(BYTES,NBYTES RECV)
TOTAL BYTES = 0
MORE TO COME = .FALSE.
GO TO 9999
ENDIF

READY TO RECEIVE SEGMENT(S)

NSEGMENTS = BLOCK(31)

RECEIVE THE FIRST BUFFER(SHGMENT)

CALL GLUE(BLOCK(32),BLOCK(33),BUFFER]_OFFSET)

CALL GLUE(BLOCK(34),BLOCK(35),BUFFERL BASE)

CALIL GLUE(BLOCK(36),BLOCK(37),BUFFER] LENGTH)

TOTAL BYTES = TOTAL BYTES + BUFFERl_LENGTH

CALL READ) BLOCK(MODULE(1),BUFFERL LENGTH,NBYTES RECV,
X BUFFERL_BASE, BUFFERl_OFFSET)

RECEIVE THE SECOND BUFFER(SEGMENT), IF ANY

IF(NSEGMENTS.NE.2) GO TO 200

CALL GLUE(BLOCK(38),BLOCK(39),BUFFER2 OFFSET)

CALL GLUE(BLOCK(40),BLOCK(41),BUFFER2 BASE)

CALL GLUE(BLOCK(42),BLOCK(43), BUFFER2_LENGTH)

IF (BUFFER2_LENGTH.GT.O) CALL READ BLOCK(MODULE(TOTAL BYTES+l),
X BUFFER2_LENGTH,NBYTES RECV,BUFFER2_BASE, BUFFER2_OFFSET)
TOTAL BYTES = TOTAL BYTES + BUFFER2_LENGTH

C UPDATE THE PCB

C

200 BLOCK(16) =

C

CALL WRITE BLOCK(BLOCK,43,BASE,OFFSET)
IF(DEBUG) CALL TRACK(BLOCK,l)

C RETURN CONTROL TO DBMS SOFTWARE

C

BYTES(1) = '47'X

BYTES(2) = 'OD'X

CALL Q OUTPUT(BYTES,2)

NBYTES RECV = 29

CALL Q INPUT(BYTES,NBYTES RECV)

ARE ALIL MODULES READ FROM THE DBP ?
IF NOT, FLAG THE CALLER

(e NoNoXe)

IF(BLOCK(15).FQ.6) THEN
MORE TO COME = .FALSE.
IF(DEBUG) WRITE(UNIT, 300)
300 FORMAT(' ** A1l data has been received **')
ELSE
MORE TO COME = .TRUE.
IF(DEBUG) WRITE(UNIT,400)

400 FORMAT(' ** There is more data to caome **')
ENDIF

C

C DONE READING AILI RESPONSES

C

C ADJUST THE MODULE ARRAY(RETURNED RESPONSE)
C TO GET RID OF THE HFADER BYTES
c
DO 500 I = 1,TOTAL BYTES
500 MODULE(I) = MODULE(I+4)
TOTAL BYTES = TOTAL BYTES - 4

C
9999 RETURN
END
SUBROUTINE SEND_REDUESI‘(MODULE,NBYTES SENT, PCBTYPE,
X APPLICATION ID,REQUEST ID)
PURPOSE :

SEND REQUEST MODULE TO THE DBP

ARGUMENTS :
MODULE - RBEQUEST MODULE
NBYTES - # OF BYTES IN REQUEST MODULE TO SEND
PCBITYPE - TYPE OF PCB TO RECEIVE RESPONSE MODULE

0 --> CONTROL PCB
1 --> APPLICATION PCB

APPLICATION ID - ARBITRARILY ASSIGNED HOST APPLICATION ID
REQUEST ID - THIS IS THE ID # OF THE SESSION MAKING
THE REQUEST. WHEN AN APPLICATION IS FIRST
CREATED, THE CONTROL SESSION(= O) ID IS
THE 'REDUEST_ID'. AFTER THAT, THE APPLICATION
ID ISSUING THE REQUEST IS THE 'REDUESI‘_ID'.
PROTOCOL: :
SERVICE PORT
LAYER :
APPLICATION
DATE :

APRIL 12,1983

OO0 00000O000000000000N00N0N00O0N0QA0

00

INCLUDE 'SPPCOM.TXT'
BYTE BUFFERL(512),BUFFER2(512),TEMP_BYTE
INTEGER*2 PCBTYPE, NSEGMENTS, BUFFERL_LENGTH, BUFFER2 LENGTH
INTEGER*2 BUFFERL_BASE, BUFFERL_OFFSET
INTEGER*2 BUFFER2 BASE,BUFFER2 OFFSET
INTEGER*2 TOTAL SENT,NBYTES SENT
INTEGER*4 APPLICATION ID,REQUEST ID
C
C STICK IN HOST APPLICATION ID & SESSION ID
c
50 NBYTES = NBYTES SENT
LEFTOVER BYTES = .FALSE.
DO 2 I = NBYTES,1,-1
2 MODULE(I+4) = MODULE(I)
CALL LOW32(APPLICATION ID,TEMP BYTE)
MODULE(1) = TEMP_BYTE
MODULE(2) = '00'X
CALL LOW32(RBQUEST ID,TEMP_BYTE)
MODULE(3) = TEMP_BYTE
MODULE(4) = '00'X
NBYTES = NBYTES + 4

C GET PCB ADDRESS VECTOR

70 IF(DEBUG) WRITE(UNIT,80)
80 FORMAT(' ** Send Request **')
BASE = 'EBOC'X
OFFSET = O
CALL READ BLOCK(BLOCK,10,NBYTES RECV,BASE,OFFSET,MORE TO COME)
IF(DEBUG) CALL TRACK(BLOCK,O0)
c
C LOOK AT THE INDEX FIELD
c
IF((BLOCK(1l).GE.'A0O'X).AND.
X (BLOCK(1).LE. 'DF'X)) THEN
WRITE(UNIT,100) BLOCK(1)
100 FORMAT(' Error in SEND REQUEST, Index(low) is ',z2,'h')
RETURN
ELSE IF ((BLOCK(1).BQ.'FF'X).AND.
X (BLOCK(2).BEQ. 'FF'X)) THEN
BYTES(1) = '03'X
CALL Q OUTPUT(BYTES,1)
NBYTES RECV = 16
CALL Q INPUT(BYTES,NBYTES RECV)

GO TO 50
ENDIF
C
C SEND REQUEST USING CONTROL OR APPLICATION PCB ?
c

IF(PCBTYPE.FQ.O) THEN
CALL GLUE(BLOCK(3),BLOCK(4),OFFSET)
CALL GLUE(BLOCK(5),BLOCK(6),BASE)
ELSE
CALL GLUE(BLOCK(7),BLOCK(8),OFFSET)
CALL GLUE(# BLOCK(9),BLOCK(10),BASE)
ENDIF
CALL RFAD BLOCK(BLOCK,43,NBYTES RECV,BASE,OFFSET)
IF(DEBUG) CALL TRACK(BLOCK,1l)

C
C TEST THE DBP STATUS FIELD, FIRST
C

IF((BLOCK(15).H).5).0R. (BLOCK(15).EQ.6)) THEN
140 IF(DEBUG) WRITE(UNIT,150) BLOCK(15)
150 FORMAT(' ** Warning **'/,

' ** Had to receive a response during ',

X

X ‘this SEND REDUEST /,

X ' ipBP Status is ',z2,'h')
CALLRECVRFSPONSE(MOIULEZNBYTESRECVPCBI‘YPEMDRETOCCME)
IF(MORETOC(IVIE) GO TO 140

ENDIF
C

C CAN SEND THE MODULE

c

NSEGMENTS = BLOCK(31)

C

C GO AHEAD AND TAKE CARE OF THE FIRST BUFFER
C

CALL GLUE(BI.[IIK(32),BHXIK(33),BUFFER1_OFFSEI‘)
CALL GLUE(BLOCK(34),BLOCK(35),BUFFERL BASE)
CALL GLUE(BLOCK(36),BLOCK(37), BUFFERl LENGTH)
IF(NBYTES.LT. BUFFERL LENGTH) THEN
LENGTH = NBYTES
ELSE
LENGTH = BUFFERL LENGTH
ENDIF
LEFTOVER = NBYTES - LENGTH
DO 200 I = 1,LENGTH
200 BUFFERIL(I) = MODULE(I)
C WRITE THE FIRST BUFFER
CALL WRITE BI.K,‘K(BUFFER1 , LENGTH, BUFFERL BASE,
X BUFFERL OFFSET)
TOTAL _SENT = LENGTH
C
C IF T™WO SEGMENTS ARE REQUESTED, SEND THE OTHER BUFFER
C
IF(NSBEGMENTS.EQ.2) THEN
CALL GLUE(M(38),BLM((39),HETER2_OF?SET)
CALL GLUE(BLOCK(40),BLOCK(41),BUFFER2 BASE)
CALL GLUE(BI_LX?K(42),BI_LXZK(43),BUFFER2:LENGI‘H)
DO 300 I = 1,LEFTOVER
300 BUFFER2(I) = MODULE(I + LENGTH)
C WRITE THE SECOND BUFFER
CALL WRITE BLCXZK(BUFFER2, LEFTOVER, BUFFER2_BASE,

X BUFFER2_OFFSET)
TOTAL SENT = TOTAL SENT + LEFTOVER
LEFTOVER = O -

ENDIF

UPDATE THE PCB &
SET 'RPQUEST LENGTH' FIELD

IF(LEFTOVER.GT.O) THEN
SEND REQUEST

BUFFER THIS REQUEST UNTIL THE REST OF THE
REQUEST DATA CAN BE SENT

‘a0 00N

BLOCK(16) =

ELSE

SEND REQUEST WITH FOM
I.E. THE COMPLETED REQUEST IS SENT

anonn

BLOCK(16) = 3
ENDIF
CALL LOW16(TOTAL SENT,BLOCK(29))
CALL HIGH16(TOTAL SENT,BLOCK(30))
CALL WRITE BLOCK(BLOCK,43,BASE,OFFSET)
IF(DEBUG) CALL TRACK(BLOCK,1)

RETURN CONTROL TO DBMS SOFTWARE

oNoKe]

BYTES(1) = '47'X

BYTES(2) = 'OD'X

CALL Q OUTPUT(BYTES,2)

NBYTES RECV = 29

CALL Q INPUT(BYTES,NBYTES RECV)

CHECK IF THE HOST NEEDS TO SEND ANY
LEFTOVER BYTES

(oNeNoKe!

IF(LEFTOVER.GT.O) THEN
IF(DEBUG) WRITE(UNIT,600) NBYTES-LENGTH
600 FORMAT(/' ** Process ',13,' leftover bytes **'/)
DO 750 I = LENGTH+1,NBYTES
750 MODULE(I-LENGTH) = MODULE(I)
NBYTES = NBYTES - LENGTH

GO TO 70
ENDIF
Cc
RETURN
END
SUBROUTINE READ BLOCK(BLOCK, NBYTES,NBYTES RECV, BASE, OFFSET)
G

*#% MACHINE DEPENDENT ***
PURPOSE :

READS DATA FROM THE DBP

ARGUMENTS :
BLOCK - DATA READ FROM DBP
NBYTES - # OF BYTES READ FROM THE DBP
BASE - BASE PART OF I/O ADDRESS
OFFSET - OFFSET PART OF I/O ADDRESS
PROTOCOL :

SERVICE PORT

LAYER :

DATA LINK

cNeNoNoRoNoRoeNo N o R Ne NN oo o No N o No oo No o Ne!

C APRIL 12,1983
C
C=
C
INCLUDE ‘'SPPCOM.TXT'
INTBGER*2 COUNT
BYTE LOWBYTE, HIGHBYTE
BYTE INIT(3)
DATA INIT/ '55'X,'52'X,'OD'X /
C
C INITIATE READ
C

50 IF(DEBUG) WRITE(UNIT,55)
55 FORMAT(' ** Initiate a READ BLOCK **')
po751=1,3
75 BYTES(I) = INIT(I)
C
C SEND COUNT,OFFSET,AND BASE
o
CALL IOW16(NBYTES,BYTES(4))
CALL HIGH16(NBYTES,BYTES(5))
CALL IOW16(OFFSET,BYTES(6))
CALL HIGH16(OFFSET,BYTES(7))
CALL LOW16(BASE,BYTES(8))
CALL HIGH16(BASE,BYTES(9))
WRITE(STRING,110) (BYTES(I),I=4,9)
110 FORMAT(6Al)
CRC = LIB$CRC(CRC TABLE,O,STRING(1:6))
CALL Low32(CRC,BYTES(10))
CALIL HIGH32(CRC,BYTES(11))

C
C SEND THE BYTES
C
CALL Q OUTPUT(BYTES,11)
C
C RECEIVE RESPONSE
C

NBYTES RECV = NBYTES + 15
CALL Q INPUT(BYTES,NBYTES RECV)
IF((BYTES(1).NE.'55'X).OR.
X (BYTES(2).NE. '52'X).OR.
X (BYTES(3).NE. 'OD'X) .OR.
X (BYTES(4).NE.'0OA'X)) THEN
IF(DEBUG) WRITE(UNIT,125) (BYTES(I),I=1,4)
125 FORMAT(' Error, Expected to find 55h,52h,0Dh,0Ah."'/,

X ' Instead found ',z2,'h',3(',',22,'h'))
GO TO 50
ENDIF
o]
C CHECK THE REMAINDER OF THE DATA BYTES
c

WRITE(STRING,150) (BYTES(I),I=5,10)
150 FORMAT(GAl)

CRC = LIB$CRC(CRC_TARBLE, O, STRING(1:6))
C
C CHECK CRC-1
Cc

CALL LOW32(CRC,LOWBYTE)

CALL HIGH32(CRC,HIGHBYTE)

IF((BYTES(11).NE.LOWBYTE).OR.

X (BYTES(12) .NE.HIGHBYTE)) THEN
C CRC'S DO NOT MATCH
IF(DEBUG) WRITE(UNIT,200) HIGHBYTE,LOWBYTE,

X BYTES(12),BYTES(11)
200 FORMAT(' Error, CRC16 :',/,
X ' Host CRC(Hich,Low) : ',22,1x,22,/,
X ' DBP CRC(High,Low) : ',2z2,1x,22/)
GO TO 50
ENDIF
C
C PROCESS REST OF DATA
C

CALL GLUE(BYTES(5),BYTES(6),NBYTES RECV)

DO 400 I = 1,NBYTES RECV+3
400 BLOCK(I) = BYTES(I+12)

WRITE(STRING,410) (BLOCK(I),I=1,NBYTES RECV)
410 FORMAT(<NBYTES RECV>Al)

CRC = LIBSCRC(CRC TABLE,O,STRING(1:NBYTES RECV))

C
C CHECK CRC-2
C
CALL IOW32(CRC,LOWBYTE)
CALI, HIGH32(CRC,HIGHBYTE)
IF((BLOCK(NBYTES RECV+1).NE.LOWBYTE).OR.
X (BLOCK(NBYTES RECV+2).NE.HIGHBYTE)) THEN
IF(DEBUG) WRITE(UNIT,500) HIGHBYTE,LOWBYTE,
X BLOCK(NBYTES RECV+2), BLOCK(NBYTES RECV+1)
500 FORMAT(' Error, CRC16 :',/, -
X ' Host CRC(High,Low) : ',z2,1x,22,/,
X ' DBP CRC(Hich,low) : ',z2,1x,z2/)
GO TO 50
ENDIF
C
C SUCCESSFUL, READ_BL@:K OPERATION
C
RETURN
END

SUBROUTINE WRITE_M(BLOCK, NBYTES, BASE, OFFSET)

C

c

C *** MACHINE DEPENDENT ***

C

C PURPOSE :

C

C WRITES DATA FROM THE HOST TO THE DBP

C

C ARGUMENTS :

C

C BLOCK - DATA TO BE WRITTEN TO THE DBP
C NBYTES - # OF BYTES IN 'BLOCK' TO BE SENT
C BASE - BASE PART OF I/O ADDRESS
C OFFSET - OFFSET PART OF I/O ADDRESS
p .

C PROTOCOL :

C

C SERVICE PORT

C

C LAYER :

C

C DATA LINK

DATE :

APRIL 12,1983

POOOOO

INCLUDE 'SPPCOM.TXT'
INTHGER*2 COUNT
BYTE INIT(3)
DATA INIT/ '55'X,'57'X,'OD'X /
C
C INITIATE WRITE
C
50 IF(DEBUG) WRITE(UNIT,60)
60 FORMAT(' ** Initiate a WRITE BLOCK **')
DO 751I=1,3 -
75 BYTES(I) = INIT(I)
C
C SEND COUNT,OFFSET, AND RASE
C
CALL LOW16(NBYTES,BYTES(4))
CALL HIGH16(NBYTES,BYTES(5))
CALL LOW16(OFFSET,BYTES(6))
CALL HIGH16(OFFSET,BYTES(7))
CALL ILOW16(BASE,BYTES(8))
CALL HIGH16(BASE,BYTES(9))
WRITE(STRING,100) (BYTES(I),I=4,9)
100 FORMAT(6Al)
CRC = LIBSCRC(CRC TARLE,O,STRING(1:6))
CALL LOW32(CRC,BYTES(10))
CALL HIGH32(CRC,BYTES(11))

C
C SEND THE BYTES
C

CALL Q OUTPUT(BYTES,11)
C
C RECEIVE ACKNOWLEDGMENT
C

NBYTES RECV = NBYTES + 15

CALL Q INPUT(BYTES,NBYTES RECV)

IF((BYTES(1).BQ.'55'X).AND.

X (BYTES(2).1Q. '57'X) .AND.

X (BYTES(3) .EQ. 'OD'X) .AND.

X (BYTES(4).BD. '0OA'X)) THEN

IF(BYTES(5).NE.'06'X) THEN
IF(DEBUG) WRITE(UNIT,200) BYTES(5) .

200 FORMAT(' Error, WRITE BLOCK 1lst Receive Ack. '/,

X ' Expecting to find O6h, instead found ',z2,'h')

GO TO 50
ENDIF
ELSE

IF (DEBUG) WRITE(UNIT,300) (BYTES(I),I=1,4)
300 FORMAT(' Error, WRITE BLOCK 1st Receive Ack.'/,

X ' Expecting to find 55h,57h,0Dh,0Bh.' /,
X ' Instead found ‘,2z2,'h',3(',',z2,'h'))
GO TO 50
ENDIF

C

C SEND DATA

ot

CRC=0

IF(NBYTES.BQ.O) GO TO 650
C
C BUFFER THE CRC
C

WRITE(STRING,625) (BLOCK(I),I=1,NBYTES)
625 FORMAT(<NBYTES>Al)

CRC = LIBSCRC(CPC_TABLE,O,STRING(I:NBY‘I‘ES))
650 CALL I0W32(CRC,BLOCK(NBYTES+1))

CALL HIGH32(CRC,BLOCK(NBYTES+2))

CALL Q_OUI‘PUT(BLOCK,NBYTES+2)

C
C RECEIVE ACKNOWLEDGEMENT
C

NBYTES RECV = 2

CALL Q_INPUI‘(BYTES,NBYTES__RECV)

IF(BYTES(1).NE.'06'X) THEN
IF(DEBUG) WRITE(UNIT,700) BYTES(1)

700 FORMAT(' Error, in WRITE BLOCK 2nd Receive Ack.'/,

X ' Expecting Oéh, instead found ',z2,'h')

GO TO 50

ENDIF
C
C SUCCESSFUL WRITE_BLalK OPERATION
C

RETURN

END

SUBROUTINE Q_INPUI'(BYTES, NBYTES_RECV)
o ,
C
C *** MACHINE DEPENDENT **%*
C
C PURPOSE :
C
C QUEUE A SEQUENCE OF BYTES TO THE INPUT CHANNEL
C 'Q_INPUI" WAITS UNTIL DATA APPEARS ON THE CHANNEL
C
C ARGUMENTS :

BYTES — THE ARRAY(SBEQUENCE) OF BYTES RECEIVED

NBYTE’S_RECV - THE NUMBER OF BYTES TO RECEIVE &

THE NUMBER OF ACTUAL BYTES RECEIVED

NOTE :
Q INPUT WAITS FOR THE DBP TO SEND 'NBYTES RECV' BYTES.
IF 'NBYTES RECV' BYTES HAVE NOT BEEN SENT BY THE TIME
THAT THE TIME-OUT VALUE(CURRENTLY 5 SECONDS) HAS

OCCURRED, THE ROUTINE EXITS WITH THE DATA THAT WAS
RECEIVED.

PROTOCOL :
SERVICE PORT ¢

LAYER :

o000 0000nN0nNan

nonan o

CNoNoNeoNe!

10

18

C

C PHYSICAL

C

C DATE :

C

C APRIL 12,1983
C

C

C

INCLUDE 'SPPCOM.TXT'
INTEGER*4 SYS$QIOW, TERMINATOR(2),TIME OUT
BYTE PRBYTES(1024), MASK(6)

TIME OUT = 1

SET UP THE TERMINATOR BYTES

o)
0

TERMINATOR(1)
TERMINATOR(2)

INITIATE THE INPUT OPERATION
(WAIT FOR THE DBP TO SPEAK)

IOSB(2) = O
STATUS = SYSSQIOW(,2VAL(TTY CHANNEL),
X $VAL(IOS TTYREADALIA4IO$M NOBCHO+IOSM TIMED),
X IOsB,,,BYTES(1),3VAL(NBYTES RECV),$VAL(5), TERMINATOR, ,)
IF(STATUS.NE.SSS NORMAL.) THEN
WRITE(UNIT,10) STATUS
FORMAT(' Error, Q INPUT failure.'/,
X ' Return Status is ',z8)
ENDIF
NBYTES RECV = IOSB(2)
IF(NBYTES RECV.EQ.O) THEN
IF(TIME OUT.EQ.10) THEN
IF(DEBUG) WRITE(UNIT,18)
FORMAT(' -—— Max Time Out''s Encountered ——')
RETURN
ELSE

C RETURN TO GET INPUT ONCE MORE

C

20

sNeNoEeNoKe!

IF(DEBUG) WRITE(UNIT,20) TIME OUT

FORMAT(' -—- Time Out # ',I2,' —=')
TIME OUT = TIME OUT + 1
GO TO 5 -

ENDIF

ENDIF
IF(DEBUG) THEN

SET UP ASCII BYTES
NOTE: NON-PRINTABLE CHARACTERS ARE DENOTED
WITH A PERTOD(_'2E'X)

DO 50 I = 1,NBYTES RECV
IF((BYTES(I).LT.'20'X).OR.
X (BYTES(I).GT.'7E'X)) THEN
PRBYTES(I) = '2E'X

ELSE ‘
PRBYTES(I) = BYTES(I)

ENDIF
50 CONTINUE _
WRITE(UNIT,100) NBYTES RECV
100 FORMAT(' == Q INPUT ='/" # of bytes is ',I5,
X /.' Byte Stream :'/)
MULTIPLE16 = (NBYTES RECV/16)*16
LEFTOVER = NBYTES RECV - MULTIPLE16
IF(MULTIPLE16.GT.0) THEN
DO 200 I = 1,MULTIPLEl6,16
WRITE(UNIT,150) (BYTES(I1),Il=I,I+15),(PRBYTES(I2),I2=I,I+15)

150 FORMAT(16(1X,72.2),2X,16A1)
200 CONTINUE
ENDIF

IF(LEFTOVER.GT.O) THEN
WRITE(UNIT,250) (BYTES(I1),I1=MULTIPLE16+1,
X MULTIPLE]G&+LEFTOVER), (PRBYTES(I2), I2=MULTIPLE16+1,
X MULTIPLE]6+LEFTOVER)
250 FORMAT(<LEFTOVER>(1X,Z2.2), <16-LEFTOVER> (3X), 2X,
X <LEFTOVER>Al)
ENDIF
WRITE(UNIT,400)
400 FORMAT(/)
ENDIF
RETURN
END
SUBROUTINE Q OUTPUT(BYTES,NBYTES)

% MACHINE DEPENDENT *
PURPOSE :

QUEUE A SBQUENCE OF BYTES TO THE OUTPUT TTY CHANNEL
ARGUMENTS :

BYTES - THE ARRAY(SEQUENCE) OF BYTES TO BE TRANSFERRED
NBYTES - # OF BYTES TO BE TRANSFERRED IN ARRAY 'BYTES'

PROTOCCOL: :
SERVICE PORT
ILAYER :
DATA LINK
DATE :

APRIL 12,1983

OQON0QONOCNONNOO0O0N0N0O0N0O0N00N0O00O00000

INCLUDE ‘'SPPCOM.TXT'
INTEGER*4 SYS$QIOW
BYTE PRBYTES(1024)

INITIATE THE OUTPUT OPERATION
(TALK TO THE DBP)

oo NoKe!

IF(DEBUG) THEN
C
C SET UP ASCII BYTES
C
DO 50 I = 1,NBYTES
IF((BYTES(I).LT.'20'X).OR.
X (BYTES(I).GT.'7E'X)) THEN
PRBYTES(I) = '2E'X
ELSE
PRBYTES(I) = BYTES(I)
ENDIF
50 CONT'INUE
WRITE(UNIT,90) NBYTES
20 FORVAT(' == Q OUTPUT ="'/' # of bytes is ', IS5,
X /.' Byte Stream :'/)
MULTIPLE16 = (NBYTES/16)*16
LEFTOVER = NBYTES - MULTIPLEl6
IF(MULTIPLE16.GT.0) THEN
DO 200 I = 1,MULTIPLELG,16
WRITE(UNIT,150) (BYTES(Il),Il=I,I+15), (PRBYTES(I2),I2=I,I+15)
150 FORMAT(16(1X,Z2.2),2X,16A1)
200 CONTINUE
ENDIF
IF(LEFTOVER.GT.0) THEN
WRITE(UNIT,250)(BYTES(I1l),I1=MULTIPLEl16+1,
X MULTIPLE]G&+LEFTOVER), (PRBYTES(I2),I2=MULTIPLEl16+1,
X MULTIPLE]6+LEFTOVER)
250 FORMAT(<LEFTOVER> (1X,Z2.2), <16-LEFTOVER> (3X) , 2X,
X <LEFTOVER>AL)
ENDIF
WRITE(UNIT,300)
300 FORMAT(/)

C
ENDIF
STATUS = SYSSQIOW(, %VAL(TI'Y_CHANNEL),
X $VAL(I0$ WRITEVBLK),IOSB,,,
X BYTES(1), $VAL(NBYTES), ,$VAL(0),,)
IF(S'IA'IUS.NE.SS$_NORMAL) THEN
WRITE(UNIT,400) STATUS
400 FORMAT(' Error, Q OUTPUT failure.',/,
X ' Return Status is ',z8)
ENDIF
RETURN

END

®

$ @Gtypeq .
SUBROUTINE LOW16(WORD16,LOWBYTE)

C=
C
C PURPOSE :

RETURN LOW ORDER BYTE FROM 16 BIT WORD
ARGUMENTS :

WORD16 - 16 BIT WORD
LOWBYTE - LOW ORDER 8 BITS

PROTOCOL :
SERVICE PORT
IAYER :

DATA LINK

3

APRIL 12,1983

OQOOOOOOOOOOOOOOOOOOOO

BYTE LOWBYTE, WORD16(2)

LOWBYTE = WORD16(1)

RETURN

END

SUBROUTINE LOW32(WORD32,LOWBYTE)

PURPOSE :
RETURN LOW ORDER BYTE FROM 32 BIT WORD
ARGUMENTS :

WORD32 - 32 BIT WORD
LONBYTE - LOW ORDER 8 BITS

PROTOCOL :

SERVICE PORT

?

DATA LINK
DATE :

APRTL 12,1983

OOOOOGOOOOOOOOOOOOOOOOOOP

BYTE LOWBYTE,WORD32(4)
LOWBYTE = WORD32(1)

RETURN
END »
SUBROUTINE HIGH16(WORD16,HIGHBYTE)

i

PURPOSE :
RETURN HIGH ORDER BYTE FROM 16 BIT WORD
ARGUMENTS :

WORD16 -~ 16 BIT WORD
HIGHBYTE - HIGH ORDER 8 BITS

PROTOCOL :
SERVICE PORT
LAYER :

DATA LINK

:

APRIL 12,1983

QOO0 OON0a000000000N

BYTE HIGHBYTE,WORD16(2)

HIGHBYTE = WORD16(2)

RETURN

END

SUBROUTINE HIGH32(WORD32,HIGHBYTE)

PURPOSE :

RETURN HIGH ORDER BYTE FROM LOWER HALF OF A
32-BIT WORD

ARGIMENTS :

WORD32 - 32 BIT WORD
HIGHBYTE - HIGH ORDER 8 BITS

g

ROTOCOL ¢

SERVICE PORT

APRIL 12,1983

HoNoNoNoNoNo o NoNoRo ko N No o No Ko Ne N No N o o Ne X e N o o X

BYTE HIGHBYTE,WORD32(4)

HIGHBYTE = WORD32(2)

RETURN

END

SUBROUTINE GLUE(LOWBYTE,HIGHBYTE,GLUED)

P E

PURPOSE :

GLUE TWO BYTES TOGETHER TO FORM A 16-BIT WORD

ARGUMENTS :
LOWBYTE - LOW ORDER 8 BITS
HIGHBYTE - HIGH ORDER 8 BITS
GLUED - 16~BIT WORD
PROTOCOL :

SERVICE PORT

APRTL: 12,1983

OOOOOOOOOOOOOOOOOOOOOOOOP

BYTE LOWBYTE, HIGHBYTE, GLUED(2)

GLUED(1) = LOWBYTE
GLUED(2) = HIGHBYTE
RETURN

END

SUBROUTINE TRACE START(TRACE UNIT)

cNeNeNoNe e NN RO N No o o No N No Ee N No RO N O N

PURPOSE :

INITIALIZE A FILE FOR DIAGNOSTIC TRACE OUTPUT

ARGUMENTS :

;
/

- LOGICAL OUTPUT UNIT FOR TRACE INFORMATION

PROTOCOL :

SERVICE PORT

?

ALL : TRACE UTILITY

-

APRIL 12,1983

o

INCLUDE 'SPPCOM.TXT'

OPEN A DEBUG FILE, IF WE ARE NOT TALKING
TO THE TERMINAL)

oNoNoNe

IF(UNIT.NE.6) OPEN(UNIT=TRACE UNIT,FILE='TRACE.DBP',
X STATUS="'NEW')

UNIT = TRACE UNIT

DEBUG = .TRUE.

C

RETURN

END

SUBROUTINE TRACE STOP
C=

PURPOSE :

STOP THE TRACE OUTPUT
ARGUMENTS :

NONE
PROTOCOL :

SERVICE PORT
LAYER :

ALL : TRACE UTILITY
DATE :

APRIL 12,1983

INCLUDE ‘'SPPCOM.TXT'

N OO0 O0000O0000OnN00n

DEBUG = .FALSE.

(P]

RETURN
END

SUBROUTINE PERFORM START

*** MACHINE DEPENDENT **%
PURPOSE :
START TRACKING THE FOLLOWING PERFORMANCE STATISTICS :
1. VAX CPU TIME ELAPSED
2. VAX CLOCK TIME ELAPSED
3. VAX BUFFERED I/O

4. VAX DIRECT I/O
5. VAX PAGE FAULT COUNT

ARGUMENTS :

QOO0 00000000Q0

eNeNeNe oo NoNoNo Ne N No Ko Ke)

NONE
PROTOCQOL:

SERVICE PORT
LAYER :

ALL : PERFORMANCE UTILITY
DATE :

APRIL 12,1983

°f

INTEGER*4 BUFIO,CPUTIME,DIO, PAGEF

INTEGER*4 BUFIO ADR,CPUTIME ADR,DIO ADR,PAGEF ADR
INTBGER*4 ZERO],ZERO2,ZERO3, ZERO4, ZERO5

INTEGER*4 SYS$GETJPI,STATUS

INTEGER*2 LENGTH1 , LENGTH2,LENGTH3, LENGTH4
INTEGER*2 BUFIO CODE,CPUTIME CODE, DIO_CODE, PAGEF CODE

COMMON/STATCOM/ CLOCK _TIME, BUFIO,CPUTIME, DIO, PAGEF
COMMON/JPICOM/ LENGTHI,BUFIO CODE, BUFIO ADR,ZEROL,
LENGTH2,CPUTIME CODE,CPUTIME ADR,ZERO2,

X
X LENGTH3,DIO_CODE, DIO ADR,ZERO3,
X

C

LENGTH4, PAGEF CODE,PAGEF ADR, ZERO4, ZEROS
DATA BUFIO CODE/ 1036 / -
DATA CPUTIME CODE/ 1031 /
DATA DIO CODE/ 1035 /

DATA PAGEF CODE/ 1034 /

DATA LENGTHI,LENGTH2,LENGTH3,LENGTH4/4,4,4,4/

C INITIALIZE THE STATISTIC VARIARLES

C

CLOCK TIME = SBCNDS(0.0)
BUFIO ADR = %LOC(BUFIO)
CPUTIME ADR= %10C(CPUTIME)
DIO ADR 3LOC(DIO)
PAGEF_ADR LOC(PAGEF)

THE PROCESS INFORMATION

STATUS = SYSSGETJPI(,,,LENGTHL,,,)
IF(STATUS.NE.l) WRITE(6,100) STATUS
FORMAT(' Error with SYSSGETJPI, status is ',Z8,'h')

RETURN
END

SUBROUTINE PERFORM STOP(NEW_CLOCK,NEW_CPU,NEW BUFF,

X NEW | DIRR'JT,NEW PAGE)~

*kk

naooannag

MACHINE DEPENDENT ***

PURPOSE :

STOP THE TRACKING OF THE PERORMANCE STATISTICS

c

E R

C AND RETURN THE VALUES

C

C

C ARGUMENTS :

C

C CLOCK - VAX CLOCK TIME ELAPSED
C CPU - VAX CPU TIME ELAPSED
C BUFFERED - VAX BUFFERED I/O

C DIRECT - VAX DIRECT I/0

C PAGE - VAX PAGE FAULT COUNT
C

C

-C PROTOCOL :

C

C SERVICE PORT

C

C LAYER :

C

C ALL : PERFORMANCE UTILITY

C

C DATE :

C

C APRIL 12,1983

C

C=

C

INTEGER*4 BUFIO,CPUTIME, DIO, PAGEF

INTEGER*4 BUFFERED,CPU_INT, DIRECT, PAGE

INTEGER*4 NEW BUFF,NEW DIRECT, NEW_PAGE

REAL, NEW CLOCK,NEW CPU

INTEGER*4 BUFIO ADR,CPUTIME ADR,DIO ADR,PAGEF ADR
INTEGER*4 ZEROL,ZERO2,ZERO3,ZER04, ZERO5

INTHGER*4 SYSSGETJPI,STATUS

INTEGER*2 LENGTH1,LENGTH2, LENGTH3, LENGTH4, LENGTH5
INTBEGER*2 BUFIO CODE,CPUTIME CODE,DIO CODE, PAGEF CODE

COMMON/STATCOM/ CLOCK TIME, BUFIO,CPUTIME, DIO, PAGEF
COMMON/JPICOM/ LENGTHI , BUFIO CODE, BUFIO ADR,ZEROL,
LENGTH2,CPUTIME CODE, CPUTIME ADR, ZERO2,
LENGTH3,DIO_CODE, DIO ADR, ZERO3,

LENGTH4, PAGEF CODE, PAGEF_ADR, ZERO4, ZERO5
DATA BUFIO CODE/ 1036 / -

DATA CPUTIME CODE/ 1031 /

DATA DIO CODE/ 1035 /

DATA PAGEF CODE/ 1034 /

DATA LENGTHL , LENGTH2,LENGTH3,LENGTH4/4,4,4,4/

C DETERMINE THE STATISTICS

c

100
C

BUFIO ADR = RLOC(BUFFERED)

CPUTIME ADR= RLOC(CPU INT)

DIO ADR™ = $LOC(DIRECT)
= $L0C(PAGE)

STATUS = SYSSGETJPI(,,,.LENGTHI,,,)
IF(STATUS.NE.I) WRITE(6,100) STATUS
FORMAT(' Error, SYS$GETJPI, status is ',z8,'h’)

C” RETURN THE APPROPRIATE STATISTICS

NEW CLOCK = SHECNDS(CLOCK TIME)

NEW CPU = (CPU INT - CPUTIME)/100.0
NEW DIRECT= DIRECT - DIO

NEW PAGE = PAGE ~ PAGEF

NEW BUFF = BUFFERED - BUFIO

RETURN

END

SUBROUTINE TRACK(BLOCK,DATA TYPE)

PURPOSE :
DISPIAY THE FORMAT OF THE REQUESTED DATA STRUCTURE

TWO DATA STRUCTURES ARE DISPIAYED -

C

C

C

C

C

C

C

C

C 1.) PCB VECTOR

C 2.) FCB

C

C

C ARGUMENTS :

C

C BIOCK — THE ARRAY CONTAINING THE DATA
C DATA TYPE - THE DATA STRUCTURE TYPE
C

C = 0 IF PCB VECTOR
C =1 IF PCB
C

C

C PROTOCOL :

C

C SERVICE PORT

C

C LAYER :

C

C ALL

Cc

C DATE :

C

C APRIL 12,1983

C

G

C

INCLUDE ‘SPPCOM.TXT'
INTEGER*2 REQUEST LENGTH
INTEGER*2 BUFFERL LENGTH, BUFFER2 LENGTH
INTEGER*4 DRP STATUS(4),HOST STATUS(6),DATA TYPE
CHARACTER*40 DBP MESSAGE(4),HOST MESSAGE(6), DBP,HOST
DATA DBP STATUS -
X /4,5,6,7/ .
DATA HOST STATUS
X /o,1,2,3,5,17/
DATA DBP MESSAGE
X /'WAIT ON ENARLE',
X 'READ RESPONSE',
X 'READ RESPONSE WITH EOM',
X 'WRITE REQUEST' /
DATA HOST MESSAGE

X /'SUSPEND SESSION',
X 'READ/WRITE OK',

X 'ERROR ENCOUNTERED',
X 'WRITE OK WITH BOM',
X 'OK FIN',

X 'ENABLE SERVICE PORT' /
Cc
C DETERMINE THE NECESSARY DECIMAL VALUES
C
CALL GLUE(BLOCK(29),BLOCK(30),REQUEST LENGTH)
CALL GLUE(BLOCK(36),BLOCK(37), BUFFERL_LENGTH)
CALL GLUE(BLOCK(42),BLOCK(43),BUFFER2 LENGTH)
C
C OUTPUT THE PCB VECTOR OR PCB
(o}
IF(DATA TYPE.EQ.1l) THEN
C
C PROCESS A PCB DATA STRUCTURE
Cc
PO50I=1,4
50 IF(BLOCK(15).PQ.DBP_STATUS(I)) GO TO 75
DBP = 'UNKNOWN DBP STATUS'
GO TO 80
75 DBP = DBP MESSAGE(I)
80 DO100 I = 1,6
100 IF(BLOCK(16).EQ.HOST STATUS(I)) GO TO 125
HOST = 'UNKNOWN HOST STATUS'
GO TO 130
125 HOST = HOST MESSAGE(I)

130 WRITE(UNIT,200) (BLOCK(Il),Il=1,14),BLOCK(15),DBP,
BLOCK(16),HOST, (BLOCK(I2),12=17,28),REQUEST LENGTH,
BLOCK(31), (BLOCK(I3),I3=35,32,-1), -
BUFFERL LENGTH, (BLOCK(14),14=41,38,-1),
BUFFER2 LENGTH
FORMAT(' +—o -—+'/,
q PCB a/,
+ —+'//,
RESERVED',T25,14(Z22.2,1X),/,
iDBP STATUS',T25,Z2.2,1X,A,/,
HOST STATUS',T25,%72.2,1X,A,/,
RESERVED',T25,12(Z2.2,1X),/,
REQUEST LENGTH',T25,14,/,
NUMBER OF SEGMENTS',T25,I1,/,
BUFFER 1 PTR',T25,4(22.2)/,
BUFFER 1 LENGTH',T25,14,/,
BUFFER 2 PTR',T25,4(22.2)/,
BUFFER 2 LENGTH',T25,14,//)

200

DDA D DB MMM XXX

:

C

C PROCESS A PCB VECTOR DATA STRUCTURE

C

WRITE(UNIT,300) (BLOCK(Il),Il=2,1,-1),
(BLOCK(12),I2=6,3,-1), (BLOCK(I3),I3=10,7,-1)

FORVAT(' + +/,

' q PCB VECTOR a/,

, —+'//,
INDEX ‘',T30,222.2,/,
CONTROL PCB ADDRESS',T30,4Z2.2,/, ,
APPLICATION PCB ADDRESS',T30,4z2.2,//)

300.

M XXM X

ENDIF

RETURN
END

THIS IS THE COMMAND FILE USED TO RUN PROGRAM 'SPP'
THE VMS TTY PORT 'TTBO:' IS USED FOR COMMUNICATIONS

G G S Qe

DBPTERM := TTBO:

$ | ALLOCATE THE PORT FORA(XZESS
ALILOCATE 'DBPTERM'

SET PROTECTION=(W: RW)/DEVICE ' DBPTERM'

»n-n-nn

SET TERMINAL CHARACTERISTICS FOR TTBO:
SEE FIGURE 2 OF THIS REPORT

v -n-nn-nnn

!
!
l
!
SET TERMINAL 'DBPTERM'/NOWRAP/WIDTH=80/SPEED=9600/PASSALL/EIGHT] BIT/PERM
$ ASSIGN/USER 'DBPTERM' REMOTE

$ ASSIGN/USER TT: SYSSINPUT

$ RUN [INTEL.SPP]SPP

$ | DEALLOCATE TTBO:

$ DFALIOCATE ‘DBPTERM'

$

APPENDIX B

A sample transmission trace

$ type trace.dbp

*% Initialize iDBP Communications *%*
== Q_OUTPUT ==

of bytes is 1

Byte Stream :

03

== QINPUT ===
of bytes is 16
Byte Stream :

OD OA 2A 43 6F 6E 74 72 6F 6C 20 43 2A 0D OA 2E

** Create Control Session *#*
*% Initiate a READ BLOCK *#*
== Q_OUTPUT ==

of bytes is 11

Byte Stream :

55 52 0D OA 00 00 00 OC EE 85 E6

== LINPUT ==
of bytes is 25
Byte Stream :

55 52 0D OA 0OA 00.00 00 OC EE 85 E6 00 00 00 00
4D 98 00 00 00 00 2E 01 2E

PCB VECTOR]

T

4+ — .’.

INDEX 0000
CONTROL PCB ADDRESS 984D0000
APPLICATION PCB ADDRESS 00000000

** Initiate a READ BLOCK *#*
== Q_OUTPUT ==

of bytes is 11

Byte Stream :

55 52 OD 2B 00 00 00 4D 98 32 El

of bytes is 58
Byte Stream :

55 52 OD OA 2B 00 00 00 4D 98 32 E1 00 00 00 00
00 00 00 00 00 00 00 00 00 00 04 00 00 02 00 00
00 00 00 00 00 04 00 00 00 00 01 BD 1F 03 00 80
00 FF FF FF 00 00 00 B3 51 2E

«+*Control C*...

UR...O.'...

UR...........'..

M.ooolooo

UR'+. . OMQZI

UR00+000M0200000

-ooooo;oQo

| PCB |

RESERVED 00 00 00 00 00 00 00 00 00 00 00 00 00 00
iDBP STATUS 04 WAIT ON ENABLE

HOST STATUS 00 SUSPEND SESSION

RESERVED 00 02 00 00 00 00 00 00 00 04 00 0O
REQUEST LENGTH 0

NUMBER OF SEGMENTS 1

BUFFER 1 PIR 00031FBD

BUFFER 1 LENGTH 128

BUFFER 2 PTR OOFFFFFF

BUFFER 2 LENGTH 0

** Initiate a WRITE BLOCK **
== Q_OUTPUT ==

of bytes is 11

Byte Stream :

55 57 0D 2B 00 00 00 4D 98 32 El

== Q__INPUT ==
of bytes is 5
Byte Stream :

55 57 0D 0OA 06
== (LOUTPUT ==

of bytes is 45
Byte Stream :

00 00 00 00 00 00 00 00 00 00 00 00 00 00 04 11
00 02 00 00 00 00 00 00 00 04 00 00 00 00 O1 BD
1F 03 00 80 00 FF FF FF 00 00 00 9E 51

== (LINP ==
of bytes is 2
Byte Stream :

06 2E

PCB

-4

-
T
e
LB

UW.+. . .M. 20

Wot.

0000000000000 00
e eses 0000000000

.Ouoooo.ooatQ

RESERVED 00 00 00 00 00 OO 00 00 00 00 00 00 00 0O

iDBP STATUS 04 WAIT ON ENABLE
HOST STATUS 11 ENABLE SERVICE PORT

RESERVED 00 02 00 00 00 00 00 00 00 04 00 0O

REQUEST LENGTH & 0
NUMBER OF SEGMENTS 1
BUFFER 1 PTR 00031FBD
BUFFER 1 LENGTH 128

BUFFER 2 PTR OOFFFFFF
BUFFER 2 LENGTH 0

== Q_OUTPUT ==
of bytes is 2
Byte Stream :

47 0D G.

== Q_INPUT ==
#f of bytes is 29
Byte Stream :

47 OD OA OD OA 2A 42 52 45 41 4B 2A 20 61 74 20 G....*BREAK* at
33 30 41 36 3A 30 33 42 41 20 OD OA 2E 30A6:03BA ...

** Create Application Session **
** Send Request **

*% Initiate a READ BLOCK **

== Q_OUTPUT ==

#f of bytes is 11

Byte Stream :

55 52 OD OA 00 00 00 OC EE 85 Eb6 URecoccoces

== Q_INPUT ==
"# of bytes is 25
Byte Stream :

55 52 OD OA OA 00 00 00 OC EE 85 E6 00 00 00 00 URsececceccccsocss
4D 98 00 00 00 00 2E 01 2E Mecooosas

PCB VECTOR

'l‘— -r.

-1

INDEX 0000
CONTROL PCB ADDRESS 984D0000
APPLICATION PCB ADDRESS 00000000

** Initiate a READ_BLOCK **
== Q_OUTPUT ==

of bytes is 11

Byte Stream :

55 52 0D 2B 00 00 00 4D 98 32 El UR.+. ..M. 2.

== Q_INPUT ==
of bytes is 58
Byte Stream :

55 52 0D OA 2B 00 00 00 4D 98 32 E1 00 00 00 00 UR.oeteeeMe2e0enn
00 00 00 00 00 00 00 OO0 00 00 07 00 00 02 00 OO0 ecocecescsccncece

00 00 00 00 00 04 00 00 00 00 O1 B9 1F 00 30 84 <ccocsceccccses0.

00 FF FF 00 FO 00 00 97 46 2E ceeesesoFu
| PCB |

+- ~+

RESERVED 00 00 00 00 00 00 00 00 00 00 00 00 00 00
iDBP STATUS 07 WRITE REQUEST

HOST STATUS 00 SUSPEND SESSION

RESERVED 00 02 00 00 00 00 00 00 00 04 00 00
REQUEST LENGTH 0

NUMBER OF SEGMENTS 1

BUFFER 1 PTR 30001FB9

BUFFER 1 LENGTH 132

BUFFER 2 PTR FOOOFFFF

BUFFER 2 LENGTH 0

*% Initiate a WRITE BLOCK **
== Q OUTPUT ==

of bytes is 11

Byte Stream :

55 57 0D 09 00 B9 1F 00 30 14 17 UWeeoooeOae

== Q_INPUT ==
of bytes is 5
Byte Stream :

55 57 OD OA 06 UW. ..
== Q OUTPUT ==

of bytes is 11
Byte Stream :

01 00 00 00 E4 O1 FE FF 00 5C 7A eseesscee\Z
== Q_INPUT ==
of bytes is 2

Byte Stream :

06 2E oo

**% Initiate a WRITE_BLOCK *%*
== Q_OUTPUT ==

of bytes is 11

Byte Stream :

55 57 0D 2B 00 00 00 4D 98 32 El UWeteo oMo 20
== Q_INPUT ==
of bytes is 5

Byte Stream :

55 57 0D OA 06

== Q OUTPUT ==
of bytes is 45
Byte Stream :

UW...

00 00 00 00 00 00 00 00 00 00 00 00 00 00 07 03 <ceceoccccsccnses
00 02 00 00 00 00 00 00 00 04 00 00 09 00 Ol B9 ecceeccccecccsne
1F 00 30 84 00 FF FF 00 FO 00 00 58 80 Y | PRPRS &8

== Q_INPUT ==
of bytes is 2
Byte Stream :

06 2E

P T
T

| PCB

P

+—+

RESERVED

iDBP STATUS

HOST STATUS
RESERVED

REQUEST LENGTH
NUMBER OF SEGMENTS
BUFFER 1 PTR
BUFFER 1 LENGTH
BUFFER 2 PTR
BUFFER 2 LENGTH

== Q_OUTPUT ==
of bytes is 2
Byte Stream :

47 0D
== Q INPUT ==

of bytes is 29
Byte Stream :

00 00 00 00 00 00 00 00 00 00 00 00 00 00
07 WRITE REQUEST
03 WRITE OK WITH EOM
00 02 00 00 00 00 00 00 00 04 00 00
9
1
30001FB9
132
FOOOFFFF
0

47 OD OA OD OA 2A 42 52 45 41 4B 2A 20 61 74 20 G....*BREAK* at
33 30 41 36 3A 30 33 42 41 20 OD OA 2E 30A6:03BA ...

** Receive Response **
**% Initiate a READ_BLOCK **

== Q_OUTPUT ==
of bytes is 11
Byte Stream :

55 52 0D 0OA 00 00 00 OC EE 85 E6 URecocsccne

== (LINPUT ==
of bytes is 25
Byte Stream :

55 52 OD OA OA 00 00 00 OC EE 85 E6 00 00 00 00
4D 98 00 00 C5 68 7C BF 2E

afcun

PCB VECTOR |

¥
s
Ll

INDEX 0000
CONTROL PCB ADDRESS 984D0000
APPLICATION PCB ADDRESS 68C50000

% Initiate a READ BLOCK *%*
== Q_OUTPUT ==

of bytes is 11

Byte Stream :

55 52 OD 2B 00 00 00 4D 98 32 El

== Q_INPUT ==
of bytes is 58
Byte Stream :

55 52 OD 0OA 2B 00 00 00 4D 98 32 E1 00 00 00 0O
00 00 00 00 00 00 00 00 00 00 06 00 00 02 00 00
00 00 00 00 00 04 00 00 09 00 O1 B9 1F 00 30 OB
00 FF FF 00 ¥O 00 00 D6 61 2E

UR......I....IO'

Mo.-ohl.o

UR.+...M. 2.

UR00+000M02'0000

oc.-..o.ooon..o.

ssesesessBe

| PCB |

RESERVED 00 00 00 00 00 00 00 00 00 00 00 00 00 00
iDBP STATUS 06 READ RESPONSE WITH EOM

HOST STATUS 00 SUSPEND SESSION

RESERVED 00 02 00 00 00 00 00 00 00 04 00 00
REQUEST LENGTH 9

NUMBER OF SEGMENTS 1

BUFFER 1 PTR 30001FB9

BUFFER 1 LENGTH 11

BUFFER 2 PTR FOOOFFFF

BUFFER 2 LENGTH 0

** Initiate a READ BLOCK *=*
== Q _OUTPUT ==

of bytes is 11

Byte Stream :

55 52 0D OB 00 B9 1F 00 30 15 F5

== Q_INPUT ==

UR......O..

of bytes 1is 26
Byte Stream :

55 52 0D OA OB 00 B9 1F 00 30 15 F5 01 00 00 00

FC 03 E4 01 00 FF 00 08 DA 2E

** Initiate a WRITE BLOCK **
== Q_OUTPUT ==

of bytes is 11

Byte Stream :

55 57 OD 2B 00 00 00 4D 98 32 El

=== Q_INPUT ==
of bytes is 5
Byte Stream :

55 57 OD 0A 06

== Q_OUTPUT ==
of bytes is 45
Byte Stream :

00 00 00 00 00 00 00 00 00 00 OO0 OO0 OO OO 06 Ol
00 02 00 00 00 00 00 00 00 04 00 00 09 00 Ol B9
1F 00 30 OB 00 FF FF 00 FO 00 00 D5 El

== Q_INPUT ==
of bytes is 2
Byte Stream :

06 2E

| PCB
+

+ —+

UR....".O'..'O.

UW-+. [OMQ 2 .

UW...

00000 svs000000e
@00 00 s 0000000000

000-000000...

RESERVED 00 00 00 00 00 00 00 00 00 00 00 OO 00 OO

iDBP STATUS 06 READ RESPONSE WITH EOM
HOST STATUS 01 READ/WRITE OK

RESERVED 00 02 00 00 00 00 00 00 00 04 00 0O

REQUEST LENGTH 9
NUMBER OF SEGMENTS 1
BUFFER 1 PTR 30001FB9
BUFFER 1 LENGTH 11
BUFFER 2 PTR FOOOFFFF
BUFFER 2 LENGTH 0

== Q OUTPUT ==
f# of bytes is 2
Byte Stream :

47 OD

=== Q_INP ==
of bytes is 29
Byte Stream :

47 OD OA OD OA 2A 42 52 45 41 4B 2A 20 61 74 20 G....*BREAK* at
33 30 41 36 3A 30 33 42 41 20 OD QA 2E 30A6:03BA ...

*% All data has been received **
** Create Application Response **

FC 03 E4 01 00 FF 00
Q_OUTPUT ==

of bytes is 2
Byte Stream :

47 0D G.

== Q__INPUT ==
of bytes is 29
Byte Stream :

47 OD OA OD OA 2A 42 52 45 41 4B 2A 20 61 74 20 G....*BREAK* at
33 30 41 36 3A 30 33 42 41 20 OD OA 2E 30A6:03BA ...

APPENDIX C - DBPSSP Source

DBPSSP has been implemented using VAX VMS FORTRAN 77.
The file "DBPSSP.FOR" contains all of the high-order

procedures which will be used most often.

@typeq

CONTENTS :
THIS FILE CONTAINS A SET OF ASSEMBLY TOOLS NECESSARY
TO EFFICIENTLY CONSTRUCT REQUEST MODULES FOR THE
DBP. EACH PROCEDURE ACTIVATES ONE OR MORE PRIMITIVE
ASSEMBLY PROCEDURES.

DATE :

APRIL 20,1983

[}

QOO0 0O W»

SUBROUTINE INIT

c
C INITIALIZE DBP COMMUNICATIONS VIA
C SPP(SERVICE PORT PROTOCOL)
c
CALL INIT COMM
RETURN
END
SUBROUTINE START
c
C START ENCODING A REQUEST MODULE
c
CALL DBP_BEGIN
RETURN
END
SUBROUTINE BITSB
c
C PREPARE FOR INSERTING AN OR’ED VALUE WITHIN
C THE REQUEST MODULE
c
CALL DBP_BITS_ BEGIN(-1)
RETURN
END
SUBROUTINE BITSB_A(OFFSET)
C
C *** ABSOLUTE OFFSET **x
C PREPARE FOR INSERTING AN ‘OR‘ED VALUE WITHIN
C THE REQUEST MODULE
C
CALL DBP_BITS BEGIN(OFFSET)
RETURN
END
SUBROUTINE BITS(BYTE VALUE)
c
C PERFORM AN ‘OR’ OPERATION OF “BYTE VALUE’ ON THE
C CURRENT BYTE WITHIN THE REQUEST MODULE.
C

BYTE BYTE VALUE

CALL DBP_BITS(BYTE_VALUE)
RETURN

END

SUBROUTINE BITSE

e NeNsEe RN sNeoNesNesNeNe! [sNeNeNsNeNe]

[sNoNsNs NN

STOP THE “OR’ING PROCESS FOR THE CURRENT BYTE BEING
FORMED WITHIN THE REQUEST MODULE

CALL DBP_BITS_END

RETURN

END

SUBROUTINE ASC(STRING,LENGTH)

INSERT AN ASCITI STRING OF LENGTH ‘LENGTH’ WITHIN
THE REQUEST MODULE.

ALSO PLACE THE ‘“LENGTH’ DIRECTLY IN FRONT OF THE
ASCII BYTES

CHARACTER* (*) STRING
INTEGER*4 LENGTH

CALL DBP_INTEGER(-1,LENGTH,1)
CALL DBP_BYTES(-1,STRING,LENGTH)
RETURN

END

SUBROUTINE ASCX(STRING,LENGTH)

INSERT AN ASCII STRING OF LENGTH ‘LENGTH” WITHIN

THE REQUEST MODULE.
DO NOT PLACE THE ‘LENGTH” WITHIN THE REQUEST MODULE

BEING BUILT

CHARACTER* (*) STRING
INTEGER*4 LENGTH

CALL DBP_BYTES(-1,STRING,LENGTH)
RETURN

END

SUBROUTINE ASC_A(OFFSET,STRING,LENGTH)

%% ABSOLUTE OFFSET ##%%*

INSERT AN ASCII STRING OF LENGTH ‘LENGTH’ WITHIN
THE REQUEST MODULE.

CHARACTER* (*) STRING
INTEGER*4 LENGTH,OFFSET

CALL DBP_INTEGER(OFFSET,LENGTH,1)

CALL DBP_BYTES(OFFSET+1,STRING,LENGTH)
RETURN

END

SUBROUTINE ASCX A(OFFSET,STRING,LENGTH)

*%% ABSOLUTE OFFSET *#*%*

INSERT AN ASCII STRING OF LENGTH ‘LENGTH” WITHIN
THE REQUEST MODULE.

CHARACTER* (*) STRING
INTEGER*4 LENGTH,OFFSET

CALL DBP_BYTES(OFFSET+l,STRING,LENGTH)
RETURN
END

[sNeoNoNeNe

a0 0n

eNeNoNeNe]

oao0a

SUBROUTINE INT1(VALUE)
INSERT A ONE-BYTE INTEGER

INTEGER*4 VALUE

CALL DBP_INTEGER(-1,VALUE,1)
RETURN

END

SUBROUTINE INT1 A(OFFSET,VALUE)

*%% ABSOLUTE OFFSET *#%%*
INSERT A ONE-BYTE INTEGER

INTEGER*4 OFFSET,VALUE

CALL DBP_INTEGER(OFFSET,VALUE,l)
RETURN

END

SUBROUTINE INT2(VALUE)

INSERT A TWO-BYTE INTEGER

INTEGER*4 VALUE

CALL DBP_INTEGER(=-1,VALUE,2) .
RETURN

END

SUBROUTINE INT2_A(OFFSET,VALUE)

*%% ABSOLUTE OFFSET *#*%*
INSERT A TWO-BYTE INTEGER

INTEGER*4 OFFSET,VALUE

CALL DBP_INTEGER(OFFSET,VALUE,2)
RETURN

END

SUBROUTINE INT4(VALUE)

INSERT A FOUR-BYTE INTEGER

INTEGER*4 VALUE

CALL DBP_INTEGER(-1,VALUE,4)
RETURN

END

SUBROUTINE INT4_A(OFFSET,VALUE)

% ABSOLUTE OFFSET #*%%
INSERT A FOUR-BYTE INTEGER

INTEGER*4 OFFSET,VALUE

CALL DBP_INTEGER(OFFSET,VALUE,4)
RETURN

END

SUBROUTINE TRON

START THE DIAGNOSTIC TRACE UTILITY
USE UNIT #9

CALL TRACE_START(9)

[eNeoNe]

aaoon0an

eNeNeNe]

(el eNe]

RETURN
END
SUBROUTINE TROFF

STOP THE TRACE UTILITY

CALL TRACE_STOP
RETURN

END

SUBROUTINE PRON

START THE PERFORMANCE MONITORING UTILITY

CALL PERFORM_ START

RETURN

END

SUBROUTINE PROFF(CLOCK,CPU,BIO,DIO,PAGE)

STOP THE PERFORMANCE MONITORING UTILITY AND

RETRIEVE THE EXECUTION STATISTICS SINCE THE
LAST ACTIVATION OF ‘PRON’

INTEGER*4 B10,DIO,PAGE

CALL PERFORM_STOP(CLOCK,CPU,BIO,DIO,PAGE)
RETURN

END

SUBROUTINE TERMINATE

INSERT THE TERMINATOR BYTES INTO THE REQUEST STREAM

CALL DBP_INTEGER(-1,°FF’X,1)
CALL DBP_INTEGER(-1,°00°X,1)
RETURN

END

SUBROUTINE SEND

SEND THE BUILT REQUEST MODULE TO THE DBP

CALL DBP_SEND

RETURN

END

SUBROUTINE RECV(RESPONSE,NBYTES RECV,MORE)

RECEIVE THE MESSAGE FROM THE DBP. IF “MORE’ IS
TRUE THEN WE SHOULD RE-ACTIVATE ‘SEND’

LOGICAL MORE
BYTE RESPONSE(1024)
INTEGER*4 NBYTES_RECV

CALL DBP_RECV(RESPONSE,NBYTES_ RECV,MORE)
RETURN

END

SUBROUTINE PERFON

TURN ON THE PERFORMANCE MONITORING

LOGICAL PERF_DEBUG ~
COMMON/ PERFMODE/ PERF_DEBUG

PERF_DEBUG = .TRUE.

RETURN
END
SUBROUTINE PERFOFF
c
C TURN OFF THE PERFORMANCE MONITORING
c
LOGICAL PERF_DEBUG
COMMON/ PERFMODE/ PERF_DEBUG
c
PERF_DEBUG = .FALSE.
RETURN
END
SUBROUTINE TRACEON
C

C TURN ON THE TRACE TO DISPLAY THE ENCODED SEND
C AND REQUEST MODULES BEING TRANSFERRED
c

LOGICAL DEBUG

COMMON/DEBUGMODE/ DEBUG

DEBUG = .TRUE.
RETURN

END

SUBROUTINE TRACEOFF

TURN OFF THE TRACE TO DISPLAY ENCODED SEND
AND REQUEST MODULES BEING TRANSFERRED

aaoaon

LOGICAL DEBUG
COMMON/DEBUGMODE/ DEBUG

DEBUG = .FALSE.
RETURN

END

SUBROUTINE DBP_BEGIN

PURPOSE :

START THE ENCODING PROCESS NECESSARY TO BUILD
A COMMAND BLOCK FOR PASSAGE TO THE DBP

ARGUMENTS :
NONE
DATE :

APRIL 2,1983

o000

BYTE BUILT MODULE(1024)

INTEGER*4 CURRENT OFFSET

COMMON/OFFSETCOM/ BUILT MODULE,CURRENT OFFSET
C &

C RESET THE CURRENT OFFSET COUNTER
c

- CURRENT_OFFSET = 0

RETURN
END)
SUBROUTINE DBP_INTEGER(OFFSET,VALUE,LENGTH)

PURPOSE :

TO INSERT A 1,2, OR 4 BYTE INTEGER INTO THE COMMAND BLOCK
BEING CONSTRUCTED.

ARGUMENTS
OFFSET - OFFSET FROM START OF THE COMMAND BLOCK
BEING BUILT. STARTS AT ZERO.
VALUE - VALUE TO BE INSERTED INTO THE COMMAND BLOCK
LENGTH - NUMBER OF BYTES IN INTEGER ’VALUE’
= 1,2, OR 4
DATE :

APRIL 2,1983

esNeNesEsEs N2 Es NN Es R s EsE s R s e 2 N2 N ®]

BYTE BYTE_ARRAY(4)

BYTE BUILT MODULE(1024)

INTEGER*4 OFFSET,VALUE,VALUE2,LENGTH,CURRENT_ OFFSET
INTEGER*4 POSITION

EQUIVALENCE(VALUE2,BYTE ARRAY(1l))

.COMMON/ OFFSETCOM/ BUILT_MODULE,CURRENT OFFSET

aQ

VALUE2 = VALUE

UPDATE THE CURRENT POSITION WITHIN
THE COMMAND BLOCK

[sNeoNeoNe]

IF(OFFSET.EQ.-1) THEN
POSITION = CURRENT_OFFSET
ELSE
POSITION = OFFSET
ENDIF
*+ DO 100 I = 1,LENGTH
100 BUILT_MODULE(POSITION+I) = BYTE ARRAY(I)
C
C UPDATE THE OFFSET COUNTER
C
CURRENT OFFSET = POSITION + LENGTH
RETURN
END
SUBROUTINE DBP_BYTES(OFFSET,STRING,LENGTH)

PURPOSE :

TO INSERT A CHARACTER STRING OF LENGTH °LENGTH® INTO
THE COMMAND BLOCK BEING CONSTRUCTED

. ARGUMENTS

[sNeoNsNeNs N NeNe N

OFFSET -~ OFFSET FROM START OF THE COMMAND BLOCK
BEING BUILT. STARTS AT ZERO.

STRING - CHARACTER STRING TO BE INSERTED INTO THE
COMMAND BLOCK

LENGTH - NUMBER OF BYTES IN CHARACTER STRING.
DATE :

APRIL 2,1983

sNoNesNesNoNoNoNesNeNoNoNeNe!

BYTE BUILT MODULE(1024)

INTEGER*4 OFFSET,LENGTH,CURRENT_ OFFSET
INTEGER*4 POSITION

CHARACTER* (*) STRING

COMMON/ OFFSETCOM/ BUILT MODULE,CURRENT OFFSET

UPDATE THE CURRENT POSITION WITHIN
THE COMMAND BLOCK

[eNeNeoNe)

IF(OFFSET.EQ.-1) THEN
POSITION = CURRENT OFFSET

ELSE
POSITION = OFFSET
ENDIF
C
C INSERT THE STRING INTO THE MODULE BEING BUILT
C
READ(STRING,100) (BUILT MODULE(I),I=POSITION+1,
X POSITION+LENGTH)
100 FORMAT(<LENGTH>Al)
Cc
C UPDATE THE OFFSET COUNTER
C
CURRENT_OFFSET = POSITION + LENGTH
RETURN
END

SUBROUTINE DBP_BITS(BYTE_VALUE)

PURPOSE :

TO “OR” THE GIVEN BYTE VALUE WITH THE BYTE
VALUE ALREADY PRESENT

NOTE:
THE CURRENT_OFFSET COUNTER IS NOT INCREMENTED

THIS PERMITS MULTIPLE OR’S. WHEN LOGICAL ‘OR’ING
IS DONE, USE ROUTINE ‘DBP_BITS_END’

ARGUMENTS

BYTE VALUE - BYTE VALUE TO “OR’

sNeoNsEeoNsEoNosNoNsNosNsNeoNsNsNeoNsNeNeoNe Nyl

DATE :

aoaaon

APRIL 2,1983

ao

BYTE BUILT MODULE(1024)

INTEGER*4 CURRENT_OFFSET

BYTE BYTE VALUE

COMMON/ OFFSETCOM/ BUILT_MODULE,CURRENT OFFSET

OR THE GIVEN BYTE WITH THE BYTE ALREADY THERE

BUILT MODULE(CURRENT OFFSET+1) = BUILT MODULE(CURRENT OFFSET+l).OR.
X BYTE_VALUE

RETURN

END

SUBROUTINE DBP_BITS_ BEGIN(OFFSET)

sNeNeoNeNesNesNesNeoNsNosNeoNesNsNeNsNeNoNeNe!

PURPOSE :
TO INITIALIZE THE GIVEN BYTE WITHIN “BUILT MODULE’.
FUTURE ‘“OR’ING IS EXPECTED ON THE CURRENT BYTE,
SO THE CURRENT OFFSET COUNTER IS NOT
INCREMENTED.
ARGUMENTS

OFFSET - OFFSET FROM START OF THE COMMAND BLOCK
BEING BUILT. STARTS AT ZERO.

DATE :

APRIL 2,1983

[eNeNeNe)

BYTE BUILT MODULE(1024)

INTEGER*4 OFFSET,CURRENT_OFFSET

INTEGER*4 POSITION

COMMON/ OFFSETCOM/ BUILT MODULE,CURRENT_OFFSET

UPDATE THE CURRENT POSITION WITHIN
THE COMMAND BLOCK

IF(OFFSET.EQ.~-1) THEN
POSITION = CURRENT OFFSET

ELSE
POSITION = OFFSET
ENDIF
BUILT MODULE(POSITION+l) = O
RETURN
END

SUBROUTINE DBP_BITS_END

o000

PURPOSE :

SIGNIFIES THAT THE “OR’ING PROCESS ON THE CURRENT
MODULE BYTE IS DONE. TIME TO CONTINUE CONSTRUCTION -
OF THE REST OF THE MODULE. INCREMENT THE CURRENT

+EeNsEs N Ee Nz Rz K2R o)

OFFSET COUNTER.
ARGUMENTS

NONE
DATE :

APRIL 2,1983

BYTE BUILT_MODULE(1024)
INTEGER*4 OFFSET,CURRENT OFFSET
COMMON/ OFFSETCOM/ BUILT_MODULE,CURRENT_ OFFSET

CURRENT_OFFSET = CURRENT_OFFSET + 1
RETURN

END

SUBROUTINE DBP_SEND

[sEeEeNeoEsNesEoEsEoEe s Ns o e o RoNo R N Ko Ko

PURPOSE :

SEND THE COMMAND BLOCK TO THE DBP.
NOTE :

THIS ROUTINE CALLS THE ‘SPP’ PACKAGE

(SERVICE PORT PROTOCOL)

TO PERMIT HOST-DBP COMMUNICATION
ARGUMENTS

NONE

DATE :

APRIL 2,1983

s EeNes s s NN

Qo0

BYTE BUILT MODULE(1024),PRBYTES(1024)
INTEGER*4 CURRENT OFFSET,TOTAL BYTES,UNIT
LOGICAL*4 MORE_TO_COME,DEBUG,PERF_DEBUG

COMMON/ OFFSETCOM/ BUILT MODULE,CURRENT_OFFSET
COMMON/ DEBUGMODE/ DEBUG

COMMON/ PERFMODE/ PERF_DEBUG

DATA PERF_DEBUG/.FALSE./,DEBUG/.FALSE./,UNIT/6/

1. SEND THE BUILT COMMAND BLOCK TO THE DBP

2. LOOP TO RECEIVE ALL DBP RESPONSES

OUTPUT THE REQUEST BLOCK IF IN DEBUG MODE
IF(DEBUG) THEN

SET UP ASCII BYTES

DO 50 I = 1,CURRENT_OFFSET+1
IF((BUILT MODULE(I).LT.‘20°X).O0R.

X (BUILT MODULE(I).GT.’7E‘X)) THEN
PRBYTES(I) = “2E’X
ELSE
PRBYTES(I) = BUILT MODULE(I)
ENDIF
50 CONTINUE
WRITE(UNIT,100) CURRENT_ OFFSET
100 FORMAT(* == DBP REQUEST =="/’ # of bytes is ’,I5,
X /,° Byte Stream :°/)
MULTIPLE16 = (CURRENT_ OFFSET/16)*16
LEFTOVER = CURRENT_OFFSET - MULTIPLEL6
IF(MULTIPLE16.GT.0) THEN
DO 200 I = 1,MULTIPLEL6,16
WRITE(UNIT,150) (BUILT MODULE(I1),I1=I,I+15),
X (PRBYTES(I2),I2=I,I+15)

150 FORMAT(16(1X,22.2),2X,16Al)
200 CONTINUE
ENDIF

IF(LEFTOVER.GT.0) THEN
WRITE(UNIT,210) (BUILT MODULE(I1),I1=MULTIPLE16+1,
X MULTIPLEl6+LEFTOVER), (PRBYTES(I2),I2=MULTIPLE16+1,
X MULTIPLEl6+LEFTOVER)
210 FORMAT (<LEFTOVER>(1X,Z2.2), <16=LEFTOVER> (3X) , 2X,
X <LEFTOVER>AL)
ENDIF
WRITE(UNIT,250)
250 FORMAT(/)
ENDIF
IF(PERF_DEBUG) CALL PRON
CALL SEND_REQUEST(BUILT MODULE,CURRENT OFFSET,1,1,1)
Cc
C FINISHED WITH THIS COMMAND
Cc
9999 RETURN
END
SUBROUTINE DBP_RECV(RESPONSE,TOTAL BYTES,MORE)

PURPOSE :

RECEIVE THE RESPONSE FROM THE DBP
NOTE :

THIS ROUTINE CALLS THE ‘SPP’ PACKAGE

(SERVICE PORT PROTOCOL)
TO PERMIT HOST-DBP COMMUNICATION

ARGUMENTS
RESPONSE - THE BYTE RESPONSE FROM THE DBP
MORE - = ,TRUE. IF THERE IS MORE TO COME_
FROM THE DBP
- = ,FALSE. IF ALL THE DATA FROM THE
DBP HAS BEEN RECEIVED
DATE :

sNeolsNeoNoNoNoNoNoNoNoNsNesNoNoNoNoNoNesRsNe N NeNe!

C APRIL 20,1983

C

BYTE RESPONSE(1024),PRBYTES(1024)

INTEGER*4 DIO,BIO,PAGE

INTEGER*4 CURRENT OFFSET,TOTAL BYTES,UNIT
LOGICAL*4 MORE,DEBUG,PERF_DEBUG
COMMON/DEBUGMODE/ DEBUG

COMMON/PERFMODE/ PERF_DEBUG

DATA PERF_DEBUG/.FALSE./,DEBUG/.FALSE./,UNIT/6/

CALL RECV_RESPONSE(RESPONSE,TOTAL_BYTES,1,MORE)
IF(PERF_DEBUG) THEN
CALL PROFF(CLOCK,CPU,BIO,DIO,PAGE)
WRITE(6,10) CLOCK,CPU,BIO,DIO,PAGE
10 FORMAT(/’ Clock ‘,F12.5/,° CPU “,Fl2.5/,
X ‘ Buffered I/0 count “,16/,° Direct 1/0 count “,I6,/,
X ‘ Page Fault count °,I6 ,//)
ENDIF
IF(TOTAL_BYTES.GT.1024) THEN
WRITE(6,25) TOTAL BYTES
25 FORMAT(’ Error, DBP says that it has °,
X 17,” bytes to send back.’,
X /° This exceeds the limit of 1024.°7)

GO TO 9999
ENDIF
c
C OUTPUT THE RESPONSE IF IN DEBUG MODE
C
IF(DEBUG) THEN
c
C SET UP ASCII BYTES
C

DO 500 I = 1,TOTAL_BYTES
IF((RESPONSE(I).LT.”20°X).OR.
X (RESPONSE(I).GT.”7E‘X)) THEN
PRBYTES(I) = “2E‘X
ELSE
PRBYTES(I) = RESPONSE(I)
ENDIF
500 CONTINUE
WRITE(UNIT,600) TOTAL BYTES
600 FORMAT(’ == DBP RESPONSE ==’/ # of bytes is ,I5,
X /,’ Byte Stream :°/)
MULTIPLE16 = (TOTAL BYTES/16)*16
LEFTOVER = TOTAL BYTES - MULTIPLEL6
IF(MULTIPLE16.GT.0) THEN
DO 700 I = 1,TOTAL BYTES,16
WRITE(UNIT,650) (RESPONSE(Il),Il=I,I+15),
X (PRBYTES(I2),I2=I,I+l15)

650 FORMAT(16(1X,Z2.2),2X,16Al)
700 CONTINUE
ENDIF

IF(LEFTOVER.GT.O) THEN
WRITE(UNIT,675) (RESPONSE(Il),Il1=MULTIPLE16+1,
X MULTIPLEl6+LEFTOVER), (PRBYTES(I2),I2=MULTIPLE16+1,
X MULTIPLE16+LEFTOVER)
675 FORMAT (<LEFTOVER> (1X,Z2.2), <16-LEFTOVER> (3X) , 2X,
X <LEFTOVER>Al) :
ENDIF

WRITE(UNIT,750)
750 FORMAT(/)
ENDIF
c
C FINISHED WITH THIS COMMAND
c
9999 RETURN
END
$

APPENDIX D - DBPSSP Examples

A FORTRAN and Pascal example are given to aid the
reader in evaluating the utility of DBPSSP. A brief trace

of the requests and responses is also included.

$ type testfor.for
PROGRAM TESTFOR

A FORTRAN EXAMPLE USING THE DBPSSP PRIMITIVE
ROUTINES

eNeNeNe!

BYTE RESPONSE(1024)
INTEGER*4 BYTES_ RECV
LOGICAL MORE

CALL TRACE_START(9)
CALL TRACEON
CALL INIT_COMM

SUBMIT KEYS “ADMIN’

aaa

CALL DBP_BEGIN

CALL DBP_INTEGER(-1,707°X,1)

CALL DBP_INTEGER(-1,5,1)

CALL DBP_BYTES(-1, ADMIN’,5)

CALL DBP_INTEGER(-1,°FF’X,1)

CALL DBP_INTEGER(-1,°00°X,1)

CALL DBP_SEND

CALL DBP_RECV(RESPONSE,BYTES RECV,MORE)

DEFINE DATABASE CALLED ‘TESTING’

e NeoNe!

CALL DBP_BEGIN

CALL DBP_INTEGER(-1,760°X,1)

CALL DBP_INTEGER(-1,7,1)

CALL DBP_BYTES(-1,°TESTING’,7)

CALL DBP_INTEGER(-1,°FF’X,1)

CALL DBP_INTEGER(-1,°00°X,1)

CALL DBP_SEND

CALL DBP_RECV(RESPONSE,BYTES RECV,MORE)

KEEP DATABASE ‘TESTING’

[eNeoNe]

CALL DBP_BEGIN
CALL DBP_INTEGER(-1,764°X,1)
CALL DBP_INTEGER(-1,7,1)
CALL DBP_BYTES(-1,“TESTING",7)
CALL DBP_INTEGER(-1,7,1)
CALL DBP_BYTES(-1,‘TESTING’,7)
CALL DBP_INTEGER(-1,°FF’X,1)
CALL DBP_INTEGER(-1,°00°X,1)
CALL DBP_SEND
CALL DBP_RECV(RESPONSE,BYTES_RECV,MORE)
c
C DEFINE FILE CALLED ‘FILEl’
c
CALL DBP_BEGIN
CALL DBP_INTEGER(-1,740°X,1)
CALL DBP_INTEGER(-1,5,1)
CALL DBP_BYTES(-1,°FILE1‘,5)
CALL DBP_INTEGER(-1,1,1)
CALL DBP_BITS BEGIN(-1)
CALL DBP_BITS(“1000°X)
CALL DBP_BITS_END

C

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

DBP_INTEGER(-1,6,1)

DBP_BYTES(-1,’DBPSYS’,6)
DBP_INTEGER(-1,2,1) ;
DBP_INTEGER(-1,10,2)

DBP_INTEGER(-1,2,1)

DBP_INTEGER(-1,0,2)

DBP_INTEGER(-1, FF’X,1)
DBP_INTEGER(-1,700°X,1)

DBP_SEND

DBP_RECV(RESPONSE,BYTES RECV,MORE)

C DEFINE SCHEMA ON PERMANENT FILE ‘FILEl’

C

c

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

DBP_BEGIN

DBP_INTEGER(-1,°49°X,1)
DBP_INTEGER(-1,5,1)
DBP_BYTES(-1,°FILEl’,5)
DBP_INTEGER(-1,1,1)
DBP_BITS_BEGIN(-1)
DBP_BITS(‘0000°X)
DBP_BITS(‘0000°X)
DBP_BITS_END

C SCHEMA SPECIFICATION ~ SET UP AS

C

C INT1 INTEGER*4
C INT2 INTEGER*4
C INT3 INTEGER*4

c

CALL
CALL
CALL
CALL
CALL

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

CALL
CALL
CALL
CALL
CALL
CALL
CALL

DBP_INTEGER(-1,0,1)
DBP_INTEGER(-1,2,1)
DBP_INTEGER(-1,20,2)
DBP_INTEGER(-1,2,1)
DBP_INTEGER(-1,20,2)

DBP_INTEGER(-1,4,1)
DBP_BYTES(-1,”INT1’,4)
DBP_INTEGER(-1,1,1)
DBP_BITS_BEGIN(-1)
DBP_BITS(‘0001°X)
DBP_BITS_END
DBP_INTEGER(-1,1,1)
DBP_INTEGER(-1,4,1)

DBP_INTEGER(-1,4,1)
DBP_BYTES(=-1,°INT2,4)
DBP_INTEGER(-1,1,1)
DBP_BITS BEGIN(-1)
DBP_BITS(‘0001°X)
DBP_BITS_END
DBP_INTEGER(-1,1,1)
DBP_INTEGER(-1,4,1)

DBP_INTEGER(=-1,4,1)
DBP_BYTES(-1,°INT3’,4)
DBP_INTEGER(-1,1,1)
DBP_BITS_BEGIN(-1)
DBP_BITS(“0001°X)
DBP_BITS_END '
DBP_INTEGER(-1,1,1)

CALL DBP_INTEGER(-1,4,1)
C DONE
CALL DBP_INTEGER(-1,°FF’X,1)
CALL DBP_INTEGER(-1,°00°X,1)
CALL DBP_SEND
CALL DBP_RECV(RESPONSE,BYTES_ RECV,MORE)
C
C KEEP FILE
C
CALL DBP_BEGIN
CALL DBP_INTEGER(-1,°41°X,1)
CALL DBP_INTEGER(-1,5,1)
CALL DBP_BYTES(-1,’FILEl’,5)
CALL DBP_INTEGER(-1,5,1)
CALL DBP_BYTES(-1,°FILEl’,5)
CALL DBP_INTEGER(-1,7,1)
CALL DBP_BYTES(-1, TESTING’,7)
CALL DBP_INTEGER(-1,°FF’X,1)
CALL DBP_INTEGER(-1,°00°X,1)
CALL DBP_SEND
CALL DBP_RECV(RESPONSE,BYTES_RECV,MORE)
c
C LIST DATABASE ‘TESTING’
C
CALL DBP_BEGIN
CALL DBP_INTEGER(-1,790°X,1)
CALL DBP_INTEGER(-1,7,1)
CALL DBP_BYTES(-1,’TESTING’,7)
CALL DBP_INTEGER(-1,1,1)
CALL DBP_INTEGER(-1,°F0’X,1)
CALL DBP_INTEGER(-1,°FF’X,1)
CALL DBP_INTEGER(-1,°00°X,1)
CALL DBP_SEND
CALL DBP_RECV(RESPONSE,BYTES_RECV,MORE)

CALL TRACE_STOP
CALL TRACEOFF
CALL EXIT

END

$ type testpas.pas
PROGRAM TESTPAS(INPUT,OUTPUT);

(* TEST OF DBPSSP *)

TYPE LIMIT =

ARRAY[1..1024] OF CHAR;

VAR RESPONSE: LIMIT;
TOTAL _BYTES: INTEGER;

MORE:
I:

(* DBPSSP

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE

BEGIN

BOOLEAN;
INTEGER;

SUPPORT PROCEDURES - EXTERNAL %)

INIT; FORTRAN;
START; FORTRAN;
TRON; FORTRAN;
TROFF; FORTRAN;
BITSB; FORTRAN;
BITS(BYTEVALUE:INTEGER); FORTRAN;
BITSE; FORTRAN;
ASC(%STDESCR STRING:PACKED ARRAY[INTEGER]
OF CHAR; LENGTH:INTEGER); FORTRAN ;
INT1(INTEGER VALUE:INTEGER); FORTRAN;
INT2(INTEGER _VALUE:INTEGER); FORTRAN;
INT4(INTEGER _VALUE:INTEGER); FORTRAN;
TERMINATE; FORTRAN;
SEND; FORTRAN;
RECV(VAR RESPONSE:LIMIT;
VAR TOTAL_ BYTES:INTEGER;
VAR MORE:BOOLEAN); FORTRAN;
TRACEON; FORTRAN;
TRACEOFF; FORTRAN;

TRACEON;

TRON;
INIT;

(* SUBMIT

START;

KEYS ‘ADMIN’ %)

INT1(7);
ASC(’ADMIN’,5);

TERMINATE;

SEND;

RECV(RESPONSE,TOTAL BYTES,MORE);
(* DEFINE DATABASE CALLED ‘TESTING’ #*)
START;
INT1(96);)
ASC(’TESTING’,7) ;"
TERMINATE;

. SEND;
* RECV(RESPONSE,TOTAL BYTES,MORE);

(* KEEP DATABASE ‘TESTING’ *)

START;

INT1(100);

ASC(“TESTING’,7);
ASC(’TESTING",7);

TERMINATE;

SEND;

RECV(RESPONSE,TOTAL_ BYTES,MORE);

(* DEFINE FILE CALLED ‘FILEl’ #*)

START;

INT1(64);
ASC(°FILEL’,5);
INTI(1);

BITSB; BITS(8); BITSE;
ASC(“DBPSYS’,6);
INT1(2);

INT2(10);

INT1(2);

INT2(0);

TERMINATE;

SEND;

RECV(RESPONSE,TOTAL BYTES,MORE);

(* DEFINE SCHEMA ON PERMANENT FILE ‘FILE’ %)

START;
INT1(73);
ASC(’FILE1’,5);
INT1(1);

BITSB; BITS(0); BITSE;

(* SCHEMA SPECIFICATION - SET UP AS

INT1 INTEGER*4
INT2 INTEGER*4
INT3 INTEGER*4

*)

INT1(0);
INT1(2);
INT2(20);
INT1(2);
INT2(20);

ASC(’INT1’,4);
INTI(1);

BITSB; BITS(1); BITSE;
INT1(1);

INT1(4);

ASC(“INT2°,4);
INT1(1);

BITSB; BITS(1); BITSE;
INT1(1);

INT1(4);

ASC(’INT3’,4);
INT1(1);

BITSB; BITS(1l); BITSE;
INT1(1);

INT1(4);

TERMINATE;
SEND;
RECV(RESPONSE,TOTAL BYTES,MORE);

(* KEEP FILE *)

START;

INT1(65);

ASC(‘FILEL’,5);

ASC(’FILEl",5);

ASC(’TESTING’,7);

TERMINATE;

SEND;

RECV(RESPONSE,TOTAL BYTES,MORE);

(* LIST DATABASE ‘TESTING® *)

START;

INT1(144);

ASC(‘TESTING’,7);

INTI(1);

INT1(240);

TERMINATE;

SEND;

RECV(RESPONSE,TOTAL BYTES,MORE);

TROFF
END.
$

$ @testfor

_TTBO: allocated
== DBP REQUEST ==
of bytes is 9
Byte Stream :

07 05 41 44 4D 49 4E FF 00 « +ADMIN. .

== DBP RESPONSE ==
of bytes is 0
Byte Stream :

== DBP REQUEST ==
of bytes is 11
Byte Stream :

60 07 54 45 53 54 49 4E 47 FF 00 *« TESTING..

== DBP RESPONSE ==
of bytes is 0
Byte Stream :

== DBP REQUEST ==
of bytes is 19
Byte Stream :

64 07 54 45 53 54 49 4E 47 07 54 45 53 54 49 4E d.TESTING.TESTIN
47 FF 00 G..

== DBP RESPONSE ==
of bytes is 0
Byte Stream @

== DBP REQUEST ==
of bytes is 24
. Byte Stream :

40 05 46 49 4C 45 31 01 00 06 44 42 50 53 59 53 @.FILEl...DBPSYS
02 0A 00 02 00 00 FF 00 cecccens

== DBP RESPONSE ==
of bytes is 0
Byte Stream :

== DBP REQUEST ==
of bytes is 45
Byte Stream :

49 05 46 49 4C 45 31 01 00 00 02 14 00 02 14 00 I.FILEleeeeccceoss
04 49 4E 54 31 01 01 01 04 04 49 4E 54 32 01 01 .INTl.....INT2..
01 04 04 49 4E 54 33 01 01 01 04 FF 00 eeeINT3eeeese

== DBP RESPONSE ==
of bytes is 0
Byte Stream :

== DBP REQUEST ==
of bytes is 23
Byte Stream :

41 05 46 49 4C 45 31 05 46 49 4C 45 31 07 54 45 A.FILE1.FILEl.TE
53 54 49 4E 47 FF 00 STING..

== DBP RESPONSE ==
of bytes is 0
Byte Stream :

== DBP REQUEST ==
of bytes is 13
Byte Stream :

90 07 54 45 53 54 49 4E 47 01 FO FF 00 + e TESTINGe o

== DBP RESPONSE ==
of bytes is 55
Byte Stream :

F8 02 90 FO 01 00 O1 01 06 02 03 00 00 00 00 07 eseecccccassccce
54 45 53 54 49 4E 47 01 03 06 02 03 03 00 05 00 TESTINGeeeoecossoe
05 46 49 4C 45 31 01 00 06 02 03 03 00 05 00 05 <FILEleeeooscoss
46 49 4C 45 31 FF 00 15 2D 2E 00 15 2D 2E 00 00 FILEl..
46 49 4C 45 31 FF 00 FILEl..

APPENDIX E - DBPQL conceptual procedures

$ type [intel.dbpql]dbpcmd.dat
(* SUPPORT PROCEDURES FOR DBPQL - EXTERNAL *)

PROCEDURE INIT; FORTRAN;

PROCEDURE START; FORTRAN;

PROCEDURE TRON; FORTRAN;

PROCEDURE TROFF; FORTRAN;

PROCEDURE BITSB; FORTRAN;

PROCEDURE BITS(BYTEVALUE:INTEGER); FORTRAN;

PROCEDURE BITSE; FORTRAN;

PROCEDURE ASC(%STDESCR STRING:PACKED ARRAY [INTEGER]
OF CHAR; LENGTH:INTEGER); FORTRAN ;

PROCEDURE ASCX(%STDESCR STRING:PACKED ARRAY [INTEGER]
OF CHAR; LENGTH:INTEGER); FORTRAN;

PROCEDURE INT1(INTEGER VALUE:INTEGER); FORTRAN;
PROCEDURE INT2(INTEGER VALUE:INTEGER); FORTRAN;
PROCEDURE INT4(INTEGER VALUE:INTEGER); FORTRAN;
PROCEDURE TERMINATE; FORTRAN;
PROCEDURE SEND; FORTRAN;
PROCEDURE RECV(VAR RESPONSE:LIMIT;

VAR TOTAL BYTES:INTEGER;

VAR MORE:BOOLEAN); FORTRAN;
PROCEDURE PERFON; FORTRAN;
PROCEDURE PERFOFF; FORTRAN;
PROCEDURE TRACEON; FORTRAN;
PROCEDURE TRACEOFF; FORTRAN;

(* UTILITY PROCEDURES #*)

PROCEDURE NUM _TO_ASCII(NUMBER:INTEGER;VAR ASCII_NUMBER:IDENT STRING;
VAR ASCII_NUMBERL:INTEGER);

(* CONVERT AN INTEGER TO ASCII #*)

VAR COUNT : INTEGER;
COUNT2 : INTEGER;
DIGIT : INTEGER;

WORKING NUMBER: INTEGER;
STRING : IDENT_STRING;

BEGIN
WORKING NUMBER := NUMBER;
COUNT := 03
REPEAT

COUNT := COUNT + 1;
DIGIT := WORKING_NUMBER -~ (WORKING_NUMBER DIV 10)*10;
WORKING_NUMBER := WORKING_NUMBER DIV 10;
STRING[COUNT] := CHR(DIGIT + 48);
UNTIL WORKING_NUMBER = 0;
(* REVERSE THE DIGITS %)
FOR COUNT2 := 1 TO COUNT DO
ASCII_NUMBER[COUNT2] := STRING[COUNT - COUNT2 + 1];
ASCII_NUMBERL := COUNT
END; £

(* RECEIVE “DESCRIBE VIEW’ RESPONSE *)

PROCEDURE DV_RESPONSE(VAR VIEW:IDENT STRING;VAR VIEWL:INTEGER;
VAR VIEW2:IDENT STRING;VAR VIEW2L:INTEGER;
VAR NUM_ITEMS:INTEGER;
VAR ITEM NAME:IDTYPE;VAR ITEM_ NAMEL:NUMTYPE;
VAR ITEM TYPE:NUMTYPE;VAR ITEM_ LENGTH:NUMTYPE);

VAR COUNT :INTEGER;
COUNT2: INTEGER;
OFFSET:INTEGER;

BEGIN

OFFSET := 16;
VIEWL := ORD(RESPONSE[OFFSET]);
VIEW := BLANK IDENT;
FOR COUNT := 1 TO VIEWL DO

VIEW[COUNT] := RESPONSE[OFFSET+COUNT] ;
(* POINT OFFSET TO ‘VIEW-OWNER® #*)
OFFSET := OFFSET + ORD(RESPONSE[OFFSET]) + 1;
VIEW2L := ORD(RESPONSE[OFFSET]);
VIEW2 := BLANK_IDENT;
FOR COUNT := 1 TO VIEW2L DO

VIEW2[COUNT] := RESPONSE[OFFSET+COUNT];
(* POINT OFFSET TO ‘READ-LOCK’ *)
OFFSET := OFFSET + ORD(RESPONSE[OFFSET]) + 1;
(* POINT OFFSET TO ‘WRITE-LOCK’ *)
OFFSET := OFFSET + ORD(RESPONSE[OFFSET]) + 1;
(* POINT OFFSET TO “READ-WRITE® *)
OFFSET := OFFSET + ORD(RESPONSE[OFFSET]) + 1;
(* POINT OFFSET TO ‘FILE-COUNT’ *)
OFFSET := OFFSET + ORD(RESPONSE[OFFSET]) + 1;

NUM_ITEMS := ORD(RESPONSE[OFFSET+3]);

OFFSET := OFFSET + 5;

FOR COUNT := 1 TO NUM _ITEMS DO

BEGIN
ITEM TYPE[COUNT] := ORD(RESPONSE[OFFSET+2]);
ITEM_LENGTH[COUNT] := ORD(RESPONSE[OFFSET+3]);
ITEM_NAMEL[COUNT] := ORD(RESPONSE[OFFSET+4]);
ITEM NAME[COUNT] := BLANK IDENT;
FOR COUNT2 := 1 TO ITEM NAMEL[COUNT] DO

ITEM_NAME([COUNT,COUNT2] := RESPONSE[OFFSET+COUNT2+4];

(* UPDATE OFFSET TO THE NEXT ITEM *)

OFFSET := OFFSET + ITEM NAMEL[COUNT] + 5;
OFFSET := OFFSET + ORD(RESPONSE[OFFSET])+1;
OFFSET := OFFSET + ORD(RESPONSE[OFFSET])+1
END
END;
(* QUERY *)

PROCEDURE QUERY;

TYPE HEXTYPE = ARRAY[l..2] OF CHAR;

VAR

NUM_ITEMS: INTEGER;

COUNT : INTEGER;
COUNT2 ¢ INTEGER;
COUNTER : INTEGER;
COUNTER2 : INTEGER;
OFFSET ¢ INTEGER;

ITEM _COUNT : INTEGER;
DBCOUNT : INTEGER;
VIEWCOUNT : INTEGER;
FILECOUNT : INTEGER;
SPACE_FILL : INTEGER;
HEXSTRING : HEXTYPE;

PROCEDURE TOHEX(BYTE_VALUE:CHAR; VAR HEXDIGITS:HEXTYPE);

FUNCTION HEXDIGIT(NUMBER:INTEGER):CHAR;

BEGIN

CASE NUMBER OF

0,1,2,3,4,5,6,7,8,9: HEXDIGIT := CHR(NUMBER+48);

10 : HEXDIGIT
11 : HEXDIGIT

12 : HEXDIGIT
13 : HEXDIGIT
14 : HEXDIGIT
15 : HEXDIGIT
END
END;
BEGIN
HEXDIGITS[1l] :=
HEXDIGITS[2] :=
END;
BEGIN
SEND;

H
H

EXDIGIT(ORD(BYTE VALUE) DIV 16
EXDIGIT(ORD(BYTE_VALUE) MOD 16

RECV(RESPONSE,TOTAL BYTES,MORE);
IF TOTAL BYTES = 0 THEN

WRITELN(’Ok’)
ELSE
BEGIN

CASE ORD(RESPONSE[1]) OF

(* FETCH RESPONSE *)

(* F1 *) 241: BEGIN

OFFSET := 1;

REPEAT

ITEM _COUNT := 0;
OFFSET := OFFSET + 3;
REPEAT

N N

ITEM _COUNT := ITEM COUNT + 1;°

FOR COUNT?2

= 1 TO ORD(RESPONSE[OFFSET]) DO

WRITE(RESPONSE [OFFSET+COUNT2]);
COUNTER := ITEMSIL[ITEM_COUNT]-ORD(RESPONSE[OFFSET]);
IF COUNTER 5> 0 THEN
FOR COUNTER2 := 1 TO COUNTER DO
WRITE(® °);
WRITE(® °);
OFFSET := OFFSET + ORD(RESPONSE[OFFSET]) + 1;

UNTIL ORD(RESPONSE[OFFSET]) = 255;
WRITELN;

OFFSET := OFFSET + 2;
UNTIL ORD(RESPONSE[OFFSET]) = 246;
END;

(* COMPLETION CODE RESPONSE *)

(* F6 *) 246: BEGIN
WRITE(‘Completion Code is “);
TOHEX(RESPONSE[6] ,HEXSTRING) ;
FOR COUNT := 1 TO 2 DO WRITE(HEXSTRING[COUNT]);
WRITE(® ‘)3
TOHEX (RESPONSE[5] ,HEXSTRING) ;
FOR COUNT := 1 TO 2 DO WRITE(HEXSTRING[COUNT]);
WRITELN;
WRITELN(’=-> Refer to the iDBP reference manual.’);
WRITELN;WRITELN;
END;

(* LIST RESPONSE *)

(* F8 *) 248: BEGIN
IF ORD(RESPONSE[7]) <> 255 THEN
BEGIN

WRITELN;WRITELN;
CASE ORD(RESPONSE[3]) OF

144 : BEGIN
OFFSET := 7;
DBCOUNT := 0;
REPEAT

CASE ORD(RESPONSE[OFFSET+1]) OF

0: BEGIN
VIEWCOUNT := VIEWCOUNT + 1;
WRITE(’ view # °,VIEWCOUNT:2,” “)
END;
1: BEGIN

FILECOUNT := 03
DBCOUNT := DBCOUNT + 1;
WRITE(’database # “,DBCOUNT:2,”)
END;
3: BEGIN
VIEWCOUNT := 0;
FILECOUNT := FILECOUNT + 1;
WRITE(’ file # °,FILECOUNT:2,” ‘)
END;
END;
OFFSET := OFFSET + 9;
FOR COUNT := 1 TO ORD(RESPONSE[OFFSET]}) DO

WRITE (RESPONSE [OFFSET+COUNT]) ;

WRITELN;
OFFSET := OFFSET + ORD(RESPONSE[OFFSET]) + 1

UNTIL ORD(RESPONSE[OFFSET])=255;
WRITELN
END;

146 : BEGIN
WRITELN(’List of Views :’);WRITELN;
OFFSET := 7;
REPEAT
OFFSET := OFFSET + 9;
FOR COUNT := 1 TO ORD(RESPONSE[OFFSET]) DO
WRITE (RESPONSE [OFFSET+COUNT]) ;
WRITELN;
OFFSET := OFFSET + ORD(RESPONSE[OFFSET])+1
UNTIL ORD(RESPONSE[OFFSET])=255;
WRITELN
END;
END
END
ELSE
WRITELN(’I have never heard of that database.’)
END;

(* DESCRIBE VIEW RESPONSE *)

(* F9 *) 249: BEGIN

IF ORD(RESPONSE[7]) <> 255 THEN

BEGIN

DV_RESPONSE(ITEM1,ITEMIL,ITEM2,ITEM2L,NUM ITEMS,
ITEMS1,ITEMS1L,VALS1,VALS2);

WRITELN;

WRITE(View : 7);

FOR COUNT := 1 TO ITEMIL DO
WRITE(ITEM1[COUNT]);

WRITELN;

WRITE(Underlying Relation : “);

FOR COUNT := 1 TO ITEM2L DO
WRITE(ITEM2[COUNT]);

WRITELN;

WRITELN(’# of items = “,NUM _ITEMS:3);
WRITELN;

FOR COUNT := 1 TO NUM_ITEMS DO

BEGIN

FOR COUNT2 := 1 TO ITEMSIL[COUNT] DO
WRITE(ITEMS1[COUNT,COUNT2 1);

SPACE FILL := 20 - ITEMSIL[COUNT];

FOR COUNT2 := 1 TO SPACE FILL DO
WRITE(® “);

CASE VALS1[COUNT] OF

WRITE(Unsigned Integer
WRITE(’Signed Integer
WRITE(Uninterpreted
WRITE(“ASCII Alphanumeric
WRITE(‘Record Pointer
WRITE(’String Pointer
WRITE(’Zero Integer

AW NWND=O
LYY

S

e 20" 00 0 o0 e o0
8 N N NS

N N N N N N NS
e we we we e We e

END;

WRITELN(VALS2[COUNT])
END
END
ELSE

WRITELN(’I have never heard of that view.’)

END;
(* REMARK RESPONSE *)

(* FC *) 252: BEGIN
WRITE(Echo : %);
FOR COUNTER := 1 TO ORD(RESPONSE[4])-1 DO
WRITE(RESPONSE[COUNTER+6 1);
WRITELN;WRITELN
END;

OTHERWISE
H
END
END
END;

(* *)

(* ATTACH ¥%)

PROCEDURE ATTACH(ITEM:IDTYPE; ITEML:NUMTYPE; NUMBER OF ITEMS,
OWN_USE,OTHERS_USE,WAIT FLAG,ABORT FLAG:INTEGER);

VAR COUNT : INTEGER;

BEGIN
INT1(0);
INT1(1);
BITSB;
BITS(WAIT_FLAG*128);
BITS(ABORT_FLAG*64);
BITSE;
FOR COUNT := 1 TO NUMBER OF_ITEMS DO
BEGIN
ASC(ITEM[COUNT }],ITEML[COUNT]);
INT1(1);
BITSB;
BITS(OWN_USE*16);
BITS(OTHERS _USE);
BITSE
END;
TERMINATE
END;

(* DEFINE DATABASE *)

PROCEDURE DEFINE DATABASE(DBNAME:IDENT_ STRING;
DBNAMEL: INTEGER);’
BEGIN

INT1(96);
ASC (DBNAME ,DBNAMEL) ;
TERMINATE

END;

(* DEFINE FILE *)

PROCEDURE DEFINE FILE(FILENAME:IDENT STRING; FILENAMEL:INTEGER;
PAGESIZE:INTEGER; VOLUMEID:IDENT STRING; VOLUMEIDL:INTEGER;
INITALLOC,MAXALLOC:INTEGER);

BEGIN
INT1(64);
ASC(FILENAME,FILENAMEL) ;
INTI(1);
INT1(PAGESIZE*128);
ASC(VOLUMEID,VOLUMEIDL);
INT1(2);
INT2 (INITALLOC);
INT1(2);
INT2 (MAXALLOC) ;
TERMINATE

END;

(* DEFINE SCHEMA *)

PROCEDURE DEFINE SCHEMA(FILENAME:IDENT STRING;FILENAMEL:INTEGER;
DSTYPE, REUSE, EXPAREA, SUBSTRLEN : INTEGER;
VARITEM: INTEGER; VIEW: IDENT_STRING ; VIEWL: INTEGER;
NUM_ITEMS : INTEGER;
DS_ID:IDTYPE;DS_IDL:NUMTYPE;
FIXEDVAR: FIXEDVAR TYPE; ITEMTYPE:ITEM_ TYPE;
ITEML:ITEML TYPE);

VAR COUNT: INTEGER;

BEGIN
INT1(73);
ASC (FILENAME ,FILENAMEL) ;
INT1(1);
BITSB;BITS (DSTYPE*16) ;BITS (REUSE*8) ;BITSE;
IF VIEWL <> 0 THEN
(* A VIEW HAS BEEN SPECIFIED FOR THE SCHEMA #*)
ASC(VIEW,VIEWL)
ELSE
(* A SCHEMA HAS BEEN EXPLICITLY DEFINED %)
BEGIN
INT1(0);
INT1(2); ,
IF EXPAREA = 0 THEN
INT2(SUBSTRLEN)
ELSE
INT2 (EXPAREA) ;
IF DSTYPE <> 0° THEN
INT1(0)
ELSE
BEGIN

INT1(2);
INT2 (VARITEM)
END;
FOR COUNT := 1 TO NUM_ITEMS DO
BEGIN
ASC(DS_ID[COUNT],DS_IDL[COUNT]);
INT1(1);
BITSB;BITS(FIXEDVAR[COUNT]*128);
BITS(ITEMTYPE[COUNT]);BITSE;
IF DSTYPE <> O THEN
INT1(0)
ELSE
BEGIN
INT1(1);
INT1(ITEML[COUNT])
END
END
END;
TERMINATE
END;

(* DEFINE VIEW - CONNECT *)

PROCEDURE DEFINE VIEW_CONNECT(NEWVIEW:IDENT STRING;NEWVIEWL:INTEGER;
SOURCE!L : IDENT_STRING; SOURCEIL:INTEGER;
STRINGPTR: IDENT STRING; STRINGPTRL:INTEGER;
SOURCE2:IDENT_STRING; SOURCE2L:INTEGER);

BEGIN
INT1(80);
ASC(NEWVIEW,NEWVIEWL);
INT1(1);
INT1(32);
ASC(SOURCE1l,SOURCEIL);
INT1(255);
INT1(5);
ASC(STRINGPTR,STRINGPTRL);
ASC(SOURCE2,SOURCE2L);
TERMINATE

END;

(* DEFINE VIEW - JOIN *)

PROCEDURE DEFINE VIEW JOIN(NEWVIEW:IDENT_ STRING;NEWVIEWL:INTEGER;
SOURCE1:IDENT_STRING; SOURCE1L:INTEGER;
ITEM]:IDENT STRING; ITEMIL:INTEGER;
SOURCE2 : IDENT_STRING; SOURCE2L: INTEGER;
ITEM2:IDENT_STRING; ITEM2L:INTEGER);

BEGIN

INT1(80); ,

ASC(NEWVIEW,NEWVIEWL);
INTI(1);

INT1(16);

ASC(SOURCE1l,SOURCEIL);
INT1(255);

INT1(5);

ASC(ITEMI1,ITEMIL);
ASC(SOURCE2,SOURCE2L);

INT1(255);
INT1(5);
ASC(ITEM2,ITEM2L);
TERMINATE
END;

(* DEFINE VIEW - ORDER %)

PROCEDURE DEFINE_VIEW_ ORDER(NEWVIEW:IDENT STRING;NEWVIEWL:INTEGER;
SOURCE:IDENT_STRING; SOURCEL:INTEGER;
ORDER_NUM: INTEGER; ITEMS1:IDTYPE; ITEMS1L:NUMIYPE;
ASC_OR_DESC:INTEGER);

VAR COUNT: INTEGER;

BEGIN
INT1(80);
ASC (NEWVIEW,NEWVIEWL);
INT1(1);
INT1(64);
ASC (SOURCE , SOURCEL) ;
FOR COUNT := 1 TO ORDER_NUM DO

BEGIN
INT1(255);
INT1(5);
ASC(ITEMS1[COUNT],ITEMSIL[COUNT]);
INT1(1);
INT1(ASC_OR DESC*128)

END;

TERMINATE

END;

(* DEFINE VIEW - PROJECT *)

PROCEDURE DEFINE_VIEW PROJECT(NEWVIEW:IDENT STRING;NEWVIEWL:INTEGER;
INC_EXC:INTEGER; SOURCE: IDENT_STRING ; SOURCEL: INTEGER;
ALL_INDICATOR:BOOLEAN; PROJECT NUM: INTEGER;

ITEM: IDTYPE; ITEML :NUMTYPE);

VAR COUNT: INTEGER;

BEGIN
INT1(80);
ASC (NEWVIEW,NEWVIEWL) ;
INTL(1);
IF INC_EXC = 0 THEN
INT1(96)
ELSE
INT1(112);
ASC(SOURCE, SOURCEL) ;
IF ALL_INDICATOR THEN
BEGIN
INT1(255);
INT1(6)
END
ELSE

BEGIN
FOR COUNT := 1 TO PROJECT_NUM DO
BEGIN)
INT1(255);
INT1(5);
ASC(ITEM[COUNT],ITEML[COUNT])
END
END;
TERMINATE
END;

(* DEFINE VIEW -~ SELECT *)

PROCEDURE DEFINE VIEW_SELECT(NEWVIEW:IDENT STRING;NEWVIEWL:INTEGER;
SOURCE: IDENT STRING; SOURCEL: INTEGER;
COMPARATOR : NUMTYPE; REC_SEARCH: INTEGER;

COMPARE NUM: INTEGER; ITEMS1: IDTYPE; ITEMS1L:NUMTYPE;
ITEMS2:IDTYPE; ITEMS2L:NUMTYPE);

VAR COUNT: INTEGER;

BEGIN
INT1(80);
ASC (NEWVIEW,NEWVIEWL) ;
INT1(1);
INT1(48);
ASC(SOURCE,SOURCEL) ;

(* CREATE A BLOCK FOR EACH COMPARATOR W/OPERANDS *)

FOR COUNT := 1 TO COMPARE NUM DO
BEGIN
IF COMPARATOR[COUNT] IN [1,11] THEN
BEGIN
INT1(2);
INT1(COMPARATOR[COUNT]);
INT1(REC_SEARCH*128);
INT1(255);
INT1(5);
ASC(ITEMS1[COUNT],ITEMSIL[COUNT 1)
END

ELSE

BEGIN
INT1(2);
INT1(COMPARATOR[COUNT]);
INT1(REC_SEARCH*128);
INT1(255);
INT1(5);
ASC(ITEMS1{ COUNT },ITEMSIL[COUNT]);
ASC(ITEMS2[COUNT],ITEMS2L[COUNT])
END; '
IF COUNT < COMPARE NUM THEN
(* INSERT AN “AND” OPERATION *)

BEGIN
INT1(2);
INT1(250);
INT1(0)

END;

TERMINATE
END;

(* DELETE DATABASE *)
PROCEDURE DELETE DATABASE(DBNAME:IDENT_STRING;DBNAMEL:INTEGER);

BEGIN
INT1(97);
ASC (DBNAME ,DBNAMEL) ;
TERMINATE

END;

(* DELETE FILE #*)
PROCEDURE DELETE FILE(FILENAME:IDENT_ STRING;FILENAMEL:INTEGER);

BEGIN
INT1(66);
ASC(FILENAME ,FILENAMEL);
TERMINATE

END;

(* DELETE VIEW %)
PROCEDURE DELETE_VIEW(VIEW:IDENT_ STRING;VIEWL:INTEGER);

BEGIN
INT1(82);
ASC(VIEW,VIEWL);
TERMINATE

END;

(* DESCRIBE VIEW #*)

PROCEDURE DESCRIBE VIEW(VIEW:IDENT STRING;VIEWL:INTEGER;
ALL_INDICATOR:BOOLEAN);

BEGIN
INT1(154);
IF ALL INDICATOR THEN
BEGIN
INT1(255);
INTi(6)
END
ELSE
ASC(VIEW,VIEWL);
TERMINATE
END;

(* DETACH *)

PROCEDURE DETACH (VIEW:IDENI;STRING;VIEWL:INTEGER;ALL_INDICATOR:BOOLEAN)s

BEGIN
INTI(1);
IF ALL_INDICATOR THEN
BEGIN
INT1(255);
INT1(6)
END
ELSE
ASC(VIEW,VIEWL);
TERMINATE
END;

(* END CURSOR *)

PROCEDURE END_CURSOR(CURSOR NUM:INTEGER;ALL INDICATOR:BOOLEAN);
BEGIN
INT1(3);
IF ALL INDICATOR THEN
BEGIN
INT1(255);
INT1(6)
END
ELSE
BEGIN
INT1(1);
INT1(CURSOR_NUM)
END;
TERMINATE
END;

(* FETCH *)
PROCEDURE FETCH(CURSOR_NUM:INTEGER;COUNT:INTEGER);

BEGIN
INTL(16);
INT1(1);
INT1(CURSOR_NUM);
IF COUNT = 0 THEN

(* FETCH ALL *)

BEGIN
INT1(255);
INT1(6)

END

ELSE

(* FETCH A SPECIFIC NUMBER OF RECORDS *)

BEGIN
INT1(2);
INT2 (COUNT)
END;
TERMINATE
END;

(* FREE *)

PROCEDURE FREE(VIEW:IDENT STRING; VIEWL:INTEGER;ALL INDICATOR:BOOLEAN);

BEGIN
INT1(1);
IF ALL INDICATOR THEN
(* FREE ALL VIEWS %)
BEGIN
INT1(255);
INT1(6)
END
ELSE
(* FREE A SPECIFIC VIEW *)
ASC(VIEW,VIEWL);
TERMINATE
END;

(* KEEP DATABASE *)

PROCEDURE KEEP_DATABASE(OLDDB:IDENT_ STRING;OLDDBL:INTEGER;
NEWDB: IDENT_STRING; NEWDBL : INTEGER);

BEGIN
INT1(100);
ASC(OLDDB,OLDDBL);
ASC(NEWDB,NEWDBL);
TERMINATE

END;

(* KEEP FILE %)

PROCEDURE KEEP_FILE(OLDFILE:IDENT_ STRING;OLDFILEL:INTEGER;
NEWFILE:IDENT STRING;NEWFILEL:INTEGER;
DATABASE: IDENT STRING;DATABASEL:INTEGER);

BEGIN
INT1(65);
ASC(OLDFILE,OLDFILEL);
ASC(NEWFILE,NEWFILEL);
IF DATABASEL = O THEN
INT1(0)
ELSE
ASC(DATABASE,DATABASEL);
TERMINATE
END;

(* KEEP VIEW %)

PROCEDURE KEEP_VIEW(OLDVIEW:IDENT STRING;OLDVIEWL:INTEGER;
NEWVIEW: IDENT STRING;NEWVIEWL:INTEGER);

BEGIN
INT1(81);]
ASC(OLDVIEW,OLDVIEWL)
ASC(NEWVIEW,NEWVIEWL)
TERMINATE

END;

.
t]
.
]

(* LIST DATABASE *)

PROCEDURE LIST DATABASE(DBNAME:IDENT_ STRING;DBNAMEL:INTEGER;
ALL ENTITIES,ALL DATABASES: BOOLEAN);

BEGIN
INT1(144);
IF ALL DATABASES THEN
BEGIN
INT1(255);
INT1(6)
END
ELSE
ASC(DBNAME,DBNAMEL);
INT1(1l);
IF NOT ALL ENTITIES THEN
INT1(0)
ELSE
INT1(160);
TERMINATE
END;

(* LIST FILE *)

PROCEDURE LIST FILE(FILENAME:IDENT_STRING;FILENAMEL:INTEGER;
ALL INDICATOR:BOOLEAN);
BEGIN
INT1(145);
IF ALL INDICATOR THEN
BEGIN
INT1(255);
INT1(6)
END
ELSE
ASC(FILENAME,FILENAMEL);
INT1(1);
INT1(255);
TERMINATE
END;

(* LIST VIEWS *)
PROCEDURE LIST VIEWS;
BEGIN
INT1(146);
INT1(255);
INT1(6);
TERMINATE
END;
(* REMARK %)
PROCEDURE REMARK(A_WORD:IDENT STRING;A WORDL:INTEGER;DESTINATION: INTEGER)s

BEGIN

INT1(58);
INT1(1);
INT1 (DESTINATION);
ASC(A_WORD,A WORDL);
TERMINATE

END;

(* SUBMIT KEYS *)
PROCEDURE SUBMIT KEYS(KEY:IDENT STRING;KEYL:INTEGER);

BEGIN
INT1(7);
ASC(KEY,KEYL);
TERMINATE

END;

(* START CURSOR *)

PROCEDURE START CURSOR(CURSOR_NUM:INTEGER; VIEW:IDENT STRING;
VIEWL :INTEGER;MODE: INTEGER; DIRECTION: INTEGER;
RETEST : INTEGER);

BEGIN
INT1(2);
INTI(1);
INT1(CURSOR_NUM);
ASC(VIEW,VIEWL);
INT1(1);
BITSB;
BITS(MODE*128);
BITS(DIRECTION*64);
BITS(RETEST*32);
BITSE;
TERMINATE

END;

PROCEDURE STORE(CURSOR_NUM:INTEGER; INTEGRITY:BOOLEAN;
ITEM NUM:INTEGER; ITEMS1:IDTYPE; ITEMSIL:NUMTYPE);

VAR COUNT:INTEGER;

BEGIN
INT1(18);
INT1(1);
INT1 (CURSOR_NUM);
INTI(1);
IF INTEGRITY THEN
INT1(0)
ELSE
INT1(128);
FOR COUNT := 1 TO ITEM NUM DO
BEGIN
ASC(ITEMS1[COUNT },ITEMSIL[COUNT])
END;
TERMINATE
END;

§

APPENDIX F - DBPQL Grammar File

$ type [intel.dbpqlldbpql.grm
<GOAL> ::= <QUERY> <EOLN>

3
e

* QUERY TYPES
KRem===
<QUERY> ::

’
<QUERY> ::= <ATTACH>

<6UERY> $:= <CREATE DATABASE>
<6UERY> ¢ ¢= <CREATE_ RELATION>
<6UERY> ::= <CREATE VIEWC>
<3UERY> ::= <CREATE VIEWJ>
<aUERY> s := <CREATE_VIEWO>
<6UERY> ::= <CREATE VIEWP>
<éUERY> ::= <CREATE VIEWS>
<éUERY> s := <DELETE_DATABASE>
<éUERY> ::= <DELETE_RELATION>
<éUERY> ¢ = <DELETE_VIEW>
<&UERY> ::= <DETACH>

<5UERY> ::= <DISPLAY>

<6UERY> ::= <ECHO>

<éUERY> ::= <HELP>

<6UERY> : := <INPUT>

<éUERY> ::= <LIST DBS>
<6UERY> ::= <LIST DB>

<5UERY> ::= <LIST_VIEWS>
<6UERY> ::= <LIST VIEW>
<6UERY> ::= <LOAD>

<8UERY> s := <PERFORM_COMMAND>
<6UERY> ¢ := <TRACE_COMMAND>
-

* ATTACH

.

<ATTACH> ::= <ATTACHK> <VIEWS> <PERMISSION>
BEGIN

START;
FREE(BLANK IDENT,1,TRUE);
ATTACH(ITEMS3,ITEMS3L,IDCOUNT,PERMISSION,0,0,0);
QUERY
END;
<ATTACHK> ::= ATTACH
IDCOUNT := O;
<VIEWS> ::= <ATTACH_VIEW>

b4
<VIEWS> ::= <VIEWS> <ATTACH_VIEW>

]

<ATTACH_VIEW> ::= <ID>

BEGIN
IDCOUNT := IDCOUNT + 1;
ITEMS3[IDCOUNT] := SSTACK[SP].IDNAME;
ITEMS3L[IDCOUNT] := SSTACK[SP].IDLEN

END;

<PERMISSION> ::= READ

PERMISSION := 1;

<PERMISSION> ::= WRITE

PERMISSION := 2;

<PERMISSION> ::= RW
PERMISSION := 3;
<PERMISSION> ::= ADMIN

PERMISSION := 4;
*_

* CREATE DATABASE

<CREATE_DATABASE> ::= <CREATE_DATABASEK> <CD_DBNAME>
BEGIN
START;
DEFINE DATABASE(DBNAME,DBNAMEL) ;
KEEP_DATABASE (DBNAME ,DBNAMEL ,DBNAME , DBNAMEL) ;
QUERY
END;
<CREATE DATABASEK> ::= CREATE DATABASE
b
<CD_DBNAME> ::= <ID>
BEGIN
DBNAME := SSTACK[SP].IDNAME;
DBNAMEL:= SSTACK[SP].IDLEN
END;

o

* CREATE RELATION
* ,
<CREATE_RELATION> ::= <CREATE RELATIONK> <DF_REST>
BEGIN
START;
DEFINE_FILE(DF_FILENAME,DF_FILENAMEL,DF_PAGESIZE,
DF_VOLUMEID,DF_VOLUMEIDL,
DF_INITALLOC,DF_MAXALLOC);

DEFINE_SCHEMA(DF_FILENAME,DF_FILENAMEL,DS TYPE,DS_REUSE,
DS_EXPAREA,DS_SUBSTRLEN,DS_VARITEM,DS VIEW,DS_VIEWL,
IDCOUNT,DS_ID,DS_IDL,DS_FIXEDVAR,
DS_ITEMTYPE,DS_ITEML);

KEEP_FILE(DF_FILENAME,DF_FILENAMEL,DF_FILENAME,DF_FILENAMEL,
DBNAME ,DBNAMEL); ’
WRITELN(’Ok, View “,DF_FILENAME:DF_FILENAMEL,’ has been created.’);

QUERY
END; ’
<CREATE_RELATIONK> ::= CREATE RELATION
BEGIN

(* DEFAULTS *)
(* DEFINE FILE DEFAULTS *)

‘FILEl ‘3
=5;

DF_FILENAME :
DF_FILENAMEL

DF_PAGESIZE := 03

DF_VOLUMEID := “DBPSYS “3
DF_VOLUMEIDL := 6;
DF_INITALLOC := 20;
DF_MAXALLOC := 03

(* DEFINE SCHEMA DEFAULTS *)

DS_REUSE
DS_VIEWL :=
DS_EXPAREA := 20;
DS_SUBSTRLEN := 80;
DS _VARITEM := 20;
IDCOUNT := O;

END;
<DF_REST> ::= <ID> IN <ID> <DF_REST2>
BEGIN
DF_FILENAME := SSTACK[MP].IDNAME;
DF_FILENAMEL:= SSTACK[MP].IDLEN;
DBNAME := SSTACK[MP+2].IDNAME;
DBNAMEL:= SSTACK[MP+2].IDLEN
END;
<DF_REST2> ::= USING SCHEMA <SCHEMA> <OPTIONS>

s
<DF_REST2> ::= USING VIEW <ID>
BEGIN
DS_VIEW := SSTACK[SP].IDNAME;
DS_VIEWL:= SSTACK[SP].IDLEN;
END;
<SCHEMA> ::= <ITEM>

?
<SCHEMA> ::= <SCHEMA> <ITEM> _

’
<ITEM> ::= <ITEM ID> <DATA_TYPE> <FIXED_VAR> <ITEM LENGTH>
’
<ITEM ID> ::= <ID>
BEGIN
IDCOUNT := IDCOUNT + 1;
DS_ID[IDCOUNT] := SSTACK[MP].IDNAME;
DS_IDL[IDCOUNT] := SSTACK[MP].IDLEN
END;
<FIXED_VAR> ::= FIXED
DS_FIXEDVAR[IDCOUNT] := 0;
<FIXED_VAR> ::= VAR
DS_FIXEDVAR[IDCOUNT] := 1;
<ITEM_LENGTH> ::= <NO>

DS_ITEML[IDCOUNT] := SSTACK[SP].IVAL;
<DATA_TYPE> ::= UNSIGNED_INT
DS_ITEMIYPE[IDCOUNT] := O;
<DATA TYPE> ::= SIGNED_INT
DS_ITEMTYPE[IDCOUNT] := 1;
<DATA_TYPE> ::= INTEGER
DS_ITEMTYPE[IDCOUNT] := 1;
<DATA_TYPE> ::= UNINTERPRET
DS_ITEMIYPE[IDCOUNT] := 2;
<DATA_TYPE> ::= ASCII
DS_ITEMTYPE[IDCOUNT] := 3;
<DATA _TYPE> ::= RECORD_PTR
DS_ITEMTYPE[IDCOUNT] := 73
<DATA_TYPE> ::= STRING_PTR
DS_ITEMTYPE[IDCOUNT] := 9;
<OPTIONS> ::=

bl
<OPTIONS> ::= <OPTIONS> <OPTION>
b4
<OPTION> ::= SMALLPAGE
DF_PAGESIZE := 0;
<OPTION> ::= LARGEPAGE
DF_PAGESIZE := 1;
<OPTION> ::= VOLUME <ID>
BEGIN
DF_VOLUMEID := SSTACK[SP].IDNAME;
DF_VOLUMEIDL:= SSTACK[SP].IDLEN;
END;
<OPTION> ::= INITALLOC <NO>
DF_INITALLOC := SSTACK[SP].IVAL;
<OPTION> ::= EXPANDFILE
DF_MAXALLOC := O0;
<OPTION> ::= MAXALLOC <NO>
DF MAXALLOC := SSTACK[SP].IVAL;

<OPTION> ::= STRUCTURED
DS_TYPE := 0;

<OPTION> ::= UN CLEAR
DS_TYPE := 1;

<OPTION> ::= UN COMPLEX
DS_TYPE := 2;

<OPTION> ::= UN UNINTERP
DS_TYPE := 3;

<OPTION> ::= UN BACKUP
DS_TYPE := 4;

<OPTION> ::= UN ROLLF
DS_TYPE := 5;

<OPTION> ::= RE USE
DS_REUSE := 0;
<OPTION> ::= NORE USE
DS_REUSE := 1;

<OPTION> ::= EXP_AREA <NO>
DS_EXPAREA := SSTACK[SP].IVAL;
<OPTION> ::= SUBSTR_LEN <NO>
DS_SUBSTRLEN := SSTACK[SP].IVAL;
<OPTION> ::= VARITEM <NO>
DS_VARITEM := SSTACK[SP].IVAL;

*

* CREATE VIEW - CONNECT

o
=

<CREATE_VIEWC> ::= <CREATE VIEWCK> <CVC_REST>

BEGIN
START;
(* ATTACH THE SOURCE VIEWS *)
FREE (BLANK _IDENT,1,TRUE);
ITEMS3[1] := SOURCEl;
ITEMS3L[1] SOURCEILL;
ITEMS3([2] SOURCE2;
ITEMS3L[2] := SOURCE2L;
ATTACH(ITEMS3,ITEMS3L,2,3,0,0,0);
DEFINE VIEW CONNECT(NEWVIEW,NEWVIEWL,SOURCEl,SOURCELL,
STRPTR, STRPTRL,SOURCE2,SOURCE2L);
KEEP_VIEW(NEWVIEW,NEWVIEWL,NEWVIEW,NEWVIEWL);
QUERY
END;
<CREATE_VIEWCK> ::= CREATE CONNECT VIEW

s
<CVC REST> ::= <NEWVIEW> FROM <SOURCEl1> <STRPTR> <SOURCE2>
BEGIN
NEWVIEW := SSTACK[MP].IDNAME;
NEWVIEWL:= SSTACK[MP].IDLEN;
SOURCE1l := SSTACK[MP+2].IDNAME;
SOURCElL:= SSTACK[MP+2].IDLEN;
STRPTR := SSTACK([MP+3].IDNAME;
STRPTRL:= SSTACK[MP+3].IDLEN;
SOURCE2 := SSTACK[SP].IDNAME;
SOURCE2L := SSTACK[SP].IDLEN
END;
<SOURCE1> ::= <ID>

5
<SOURCE2> ::= <ID>

1]
<NEWVIEW> ::= <ID>

]
<STRPTR> ::= <ID>

’
*=

* CREATE VIEW - JOIN
<CREATE VIEWJ> ::= <CREATE VIEWJK> <CVJ_REST>
BEGIN
START;
(* ATTACH THE SOURCE VIEWS *)
FREE(BLANK_IDENT,1,TRUE);
ITEMS3[1] := SOURCEl;
ITEMS3L[1]:= SOURCELL;
ITEMS3[2] := SOURCE2;
ITEMS3L[2] := SOURCE2L;
ATTACH(ITEMS3,ITEMS3L,2,3,0,0,0);
DEFINE_VIEW_JOIN(NEWVIEW,NEWVIEWL,SOURCEl,SOURCELL,
ITEM1,ITEMIL,SOURCE2,SOURCE2L,
ITEM2,ITEM2L);
KEEP_VIEW(NEWVIEW,NEWVIEWL,NEWVIEW,NEWVIEWL);
QUERY
END;
<CREATE _VIEWJK> ::= CREATE JOIN VIEW

b}
<CVJ_REST> ::= <NEWVIEW> FROM <SOURCEl> <ID> <SOURCE2> <ID>
BEGIN ,

NEWVIEW := SSTACK[MP].IDNAME;

NEWVIEWL:= SSTACK[MP].IDLEN;

SOURCE1 := SSTACK[MP+2].IDNAME;
SOURCE1L:= SSTACK[MP+2].IDLEN;
ITEM1 := SSTACK[MP+3].IDNAME;
ITEMIL:= SSTACK[MP+3].IDLEN;
SOURCE2 := SSTACK[MP+4].IDNAME;
SOURCE2L := SSTACK[MP+4].IDLEN;
ITEM2 := SSTACK[SP].IDNAME;
ITEM2L:= SSTACK[SP].IDLEN

END;

&

* CREATE VIEW - ORDER

<CREATE VIEWO> ::= <CREATE VIEWOK> <CVQO_REST>
BEGIN
START;
(* ATTACH THE SOURCE VIEW *)
FREE(BLANK_IDENT,1,TRUE);
ITEMS3[1] := SOURCElL;
ITEMS3L[1] := SOURCELL;
ATTACH(ITEMS3,ITEMS3L,1,3,0,0,0);
DEFINE_VIEW _ORDER(NEWVIEW,NEWVIEWL,SOURCEl,SOURCELL,
IDCOUNT,ITEMS1,ITEMS1L,ASC_OR DESC);
KEEP_VIEW(NEWVIEW,NEWVIEWL,NEWVIEW,NEWVIEWL);
QUERY
END;
<CREATE VIEWOK> ::= CREATE ORDER VIEW
BEGIN
IDCOUNT := 0;
ASC_OR DESC := 0
END;
<CVO_REST> ::= <NEWVIEW> FROM <SOURCEl1> <ORDER_ITEMS> <ASC_OR _DESC>
BEGIN
NEWVIEW := SSTACK[MP].IDNAME;

NEWVIEWL:= SSTACK[MP].IDLEN;

SOURCE1 := SSTACK[MP+2].IDNAME;

SOURCE1L:= SSTACK[MP+2].IDLEN
END;

<ORDER_ITEMS> ::= <ORDER_ITEM>

9’
<ORDER_ITEMS> ::= <ORDER_ITEMS> <ORDER ITEM>
’
<ORDER_ITEM> ::= <ID>
BEGIN
IDCOUNT := IDCOUNT + 1;
ITEMS1[IDCOUNT] := SSTACK[SP].IDNAME;
ITEMSIL[IDCOUNT] := SSTACK[SP].IDLEN
END;
<ASC_OR _DESC> ::=

’
<ASC_OR_DESC>

::= ASCENDING
ASC_OR _DESC := 0;
<ASC_OR_DESC> ::= DESCENDING
ASC_OR DESC := 1;

oo,

* CREATE VIEW - PROJECT

o
=

<CREATE VIEWP> ::= <CREATE VIEWPK> <CVP_REST>
BEGIN

START;

(* ATTACH THE SOURCE VIEW *)

FREE (BLANK _IDENT,1,TRUE);
ITEMS3[1]) := SOURCEl;
ITEMS3L[1) := SOURCEIL;
ATTACH(ITEMS3,ITEMS3L,1,3,0,0,0);
DEFINE VIEW_PROJECT(NEWVIEW,NEWVIEWL,INC EXC,SOURCEl,SOURCELL,
ALL INDICATOR,IDCOUNT,ITEMS1,ITEMSIL);
KEEP_VIEW(NEWVIEW,NEWVIEWL,NEWVIEW,NEWVIEWL);
QUERY
END;
<CREATE_VIEWPK> ::= CREATE PROJECT VIEW
BEGIN
IDCOUNT := O3
ALL INDICATOR := FALSE;
INC EXC := 0
END;
<CVP_REST> ::= <NEWVIEW> FROM <SOURCEl> <INC EXC> <PROJECT_ IDS>
BEGIN
NEWVIEW := SSTACK[MP).IDNAME;
NEWVIEWL:= SSTACK[MP].IDLEN;
SOURCEl := SSTACK[MP+2].IDNAME;
SOURCE1L:= SSTACK[MP+2).IDLEN
END;
<PROJECT_IDS> ::= ALL-ITEMS
ALL INDICATOR := TRUE;
<PROJECT_IDS> ::= <PROJECT_ID>

’
<PROJECT_1IDS> ::= <PROJECT_IDS> <PROJECT_ID>
]
<PROJECT_ID> ::= <ID>
BEGIN
IDCOUNT := IDCOUNT + 1;
ITEMS1[IDCOUNT] := SSTACK[SP].IDNAME;
ITEMS1L[IDCOUNT] SSTACK[SP] . IDLEN
END;
<INC_EXC> ::

9
<INC_EXC> ::= INCLUDING
INC_EXC := 0;
<INC_EXC> ::= EXCLUDING
INC_EXC := 1;

*

* CREATE VIEW - SELECT
*x:
<CREATE VIEWS> ::= <CREATE VIEWSK> <CVS_REST>
BEGIN
START;
(* ATTACH THE SOURCE VIEW *)
FREE(BLANK IDENT,1,TRUE);
ITEMS3[1]) := SOURCEl;
ITEMS3L[1]):= SOURCE1L;
ATTACH(ITEMS3,ITEMS3L,1,3,0,0,0);
DEFINE VIEW SELECT(NEWVIEW,NEWVIEWL,SOURCEl,SOURCE1L,COMPARATOR,
REC_SEARCH, IDCOUNT,ITEMS1,ITEMS1L,ITEMS2,ITEMS2L);
KEEP_VIEW(NEWVIEW,NEWVIEWL,NEWVIEW,NEWVIEWL);
QUERY
END;
<CREATE _VIEWSK> ::= CREATE SELECT VIEW
BEGIN
REC_SEARCH := 0;
IDCOUNT := O

END;

<CVS_REST> ::= <NEWVIEW> FROM <SOURCEl> WHERE <WHERE_CLAUSE>

BEGIN
NEWVIEW := SSTACK[MP].IDNAME;
NEWVIEWL:= SSTACK[MP].IDLEN;
SOURCE]l := SSTACK[MP+2].IDNAME;
SOURCE1L:= SSTACK[MP+2].IDLEN

END;

<WHERE_CLAUSE> ::= <SINGLE_ CLAUSE>

’
<WHERE CLAUSE> ::= <WHERE CLAUSE> AND <SINGLE CLAUSE>

H
<SINGLE CLAUSE> ::= <FIRST> <BINARY> <SECOND>
4
<FIRST> ::= <ID>
BEGIN
IDCOUNT := IDCOUNT + 1;
ITEMS1[IDCOUNT] := SSTACK[SP].IDNAME;
ITEMSIL[IDCOUNT] := SSTACK[SP].IDLEN

END;

<SECOND> ::= <ID>

BEGIN
ITEMS2[IDCOUNT] := SSTACK[SP].IDNAME;
ITEMS2L[IDCOUNT] := SSTACK[SP].IDLEN

END;

<SECOND> ::= <NO>

BEGIN

NUM_TO_ASCII(SSTACK[SP].IVAL,ITEM1,ITEMIL);
ITEMS2[IDCOUNT] := ITEMI ;
ITEMS2L[IDCOUNT] := ITEMIL

END;

<SINGLE CLAUSE> ::= <FIRST> <UNARY>

’
<BINARY> ::= =

COMPARATOR[IDCOUNT] := 20;
<BINARY> ::= <>
COMPARATOR[IDCOUNT] := 30;
<BINARY> ::= <
COMPARATOR[IDCOUNT] := 40;
<BINARY> ::= <=
COMPARATOR[IDCOUNT] := 60;

<BINARY> ::= >=
COMPARATOR[IDCOUNT] := 50;
<BINARY> ::= >

COMPARATOR[IDCOUNT] := 70;
<UNARY> ::= IS VALUED
COMPARATOR{ IDCOUNT] := 1;

<UNARY> ::= IS NULL
COMPARATOR[IDCOUNT] := 11;
<SELECT_OPTIONS> ::= PERFORM
REC_SEARCH := 0;
<SELECT_OPTIONS> ::= NOPERFORM
REC_SEARCH := 1;
<SELECT_OPTIONS> ::=

*

* DELETE DATABASE

<DELETE _DATABASE> ::= <DELETE_DATABASEK> <ID>
BEGIN

<SELECT_OPTIONS>

START;
DELETE_DATABASE(SSTACK[SP].IDNAME,SSTACK[SP].IDLEN);
QUERY '

END;

<DELETE_DATABASEK> ::= DELETE DATABASE

.
b4
o

* DELETE RELATION

<DELETE RELATION> ::= <DELETE RELATIONK> <ID>

BEGIN
START;
(* ATTACH THE IDENTITY VIEW *)
FREE (BLANK_IDENT, 1, TRUE);
ITEMS3[1] := SSTACK[SP].IDNAME;
ITEMS3L[1l] := SSTACK[SP].IDLEN;
ATTACH(ITEMS3,ITEMS3L,1,4,0,0,0);
DELETE FILE(SSTACK[SP].IDNAME,SSTACK[SP].IDLEN);
QUERY

END;

<DELETE RELATIONK> ::= DELETE RELATION

.

’
*:

* DELETE VIEW
*
<DELETE_VIEW> ::= <DELETE VIEWK> <ID>
BEGIN
(* FIRST FIND THE UNDERLYING FILE- IDENTITY VIEW NAME *)
(* THIS IDENTITY VIEW MUST BE ATTACHED WITH ‘ADMIN * *)

START;
DESCRIBE_VIEW(SSTACK([SP].IDNAME,SSTACK[SP].IDLEN,FALSE);
SEND;
RECV(RESPONSE,TOTAL BYTES,MORE);
DV_RESPONSE(ITEMI1,ITEMIL,ITEM2,ITEM2L,NUM ITEMS,
ITEMS1,ITEMS1L,VALS1,VALS2);
START;
FREE(BLANK IDENT,1,TRUE);
ITEMS3([1] := ITEM2;
ITEMS3L[1l] := ITEM2L;
ATTACH(ITEMS3,I1TEMS3L,1,4,0,0,0);
DELETE_VIEW(SSTACK[SP].IDNAME,SSTACK[SP].IDLEN);
QUERY
END;
<DELETE_VIEWK> ::= DELETE VIEW

E4
.

* DETACH
*:
<DETACH> ::= <DETACHK> <DETACH_WHAT>
BEGIN
START; ‘
DETACH(ITEM1,ITEMIL,ALL INDICATOR);
QUERY
END;
<DETACHK> ::= DETACH
ALL INDICATOR := FALSE;
<DETACH_WHAT> ::= <ID>
BEGIN
ITEM]1 := SSTACK[SP].IDNAME;

ITEM1L:= SSTACK[SP].IDLEN
END;
<DETACH_WHAT> ::= ALL
ALL INDICATOR := TRUE;

* DISPLAY

<DISPLAY> ::= DISPLAY <ID>
BEGIN
START;
DESCRIBE_VIEW(SSTACK[SP].IDNAME,SSTACK[SP].IDLEN,FALSE);
SEND;
RECV(RESPONSE,TOTAL BYTES,MORE);
DV_RESPONSE(ITEM1,ITEMIL,ITEM2,ITEM2L,NUM ITEMS,
ITEMS1,ITEMS1L,VALS1,VALS2);
(* PROVIDE A HEADER FOR THE VIEW DISPLAY %)
WRITELN;
WRITELN;
FOR COUNT := 1 TO NUM_ITEMS DO
BEGIN
FOR COUNT2 := 1 TO ITEMS1L[COUNT] DO
WRITE(ITEMS1[COUNT,COUNT2]);
COUNTER := VALS2[COUNT] - ITEMSIL[COUNT];
IF COUNTER > O THEN

BEGIN
FOR COUNTER2 := 1 TO COUNTER DO
WRITE(® ‘)
END;
WRITE(® *)
END;
WRITELN;

(* DRAW THE UNDERLINING *)
FOR COUNT := 1 TO NUM_ITEMS DO
BEGIN
FOR COUNT2 := 1 TO ITEMSIL[COUNT] DO
WRITE(_");
COUNTER := VALS2[COUNT] - ITEMSIL[COUNT];
IF COUNTER > O THEN
BEGIN
FOR COUNTER2 := 1 TO COUNTER DO
WRITE(® *)
END;
WRITE(®)
END;
WRITELN;
WRITELN;

START;
(* ATTACH THE SOURCE VIEW *)
FREE (BLANK_IDENT,1,TRUE);
ITEMS3[1] := SSTACK[SP].IDNAME;
ITEMS3L[1]:= SSTACK[SP].IDLEN;
ATTACH(ITEMS3,ITEMS3L,1,3,0,0,0);
START CURSOR(1,SSTACK[SP].IDNAME,SSTACK[SP].IDLEN,
0,0,1);
FETCH(1,0);
END_CURSOR(1,TRUE);
QUERY
END;

* ECHO

<ECHO> ::= <ECHOK> <ID>

BEGIN
START;
REMARK(SSTACK[SP].IDNAME,SSTACK[SP].IDLEN,1);
QUERY

END;

<ECHOK> ::= ECHO

]
*.

* HELP

<HELP> ::= <HELPK> <HELP_COMMAND>

?
<HELPK> ::= HELP

b4
<HELP_COMMAND> ::=

BEGIN
WRITELN; WRITELN;
WRITELN(’The following commands are available :7);
WRITELN;
WRITELN(’CREATE DELETE DISPLAY ECHO INPUT LIST’);
WRITELN(‘LOAD PERFON PERFOFF TRACEON’);
WRITELN(’TRACEOFF’);
WRITELN;

WRITELN(’General Notes :’);WRITELN;

WRITELN(“l. To continue lines of input use a dash(-) at the end’);
WRITELN(’ of each line to be continued.’);

WRITELN(’2. To exit DBPQL, just enter X at the prompt.”’);

WRITELN;

WRITELN(’For a specific help, type HELP <command>”)

END;
<HELP_COMMAND> ::= CREATE
BEGIN

WRITELN;WRITELN;

WRITELN(’You can create several different entities :°);WRITELN;
WRITELN(’CREATE DATABASE’);
WRITELN(’CREATE RELATION’);
WRITELN(‘CREATE CONNECT VIEW’);
WRITELN(’CREATE JOIN VIEW’);
WRITELN(’CREATE PROJECT VIEW’);
WRITELN(’CREATE SELECT VIEW’);
WRITELN(’CREATE ORDER VIEW’) ;WRITELN;
WRITELN(‘To get more help on any one of these,’);
WRITELN(type HELP <one of the above lines>’)
END;
<HELP_COMMAND> ::= CREATE DATABASE
BEGIN
WRITELN; WRITELN;
WRITELN(’CREATE DATABASE <DBNAME>’);
WRITELN(‘where <DBNAME> is the name of the database to be created.’)

END;
<HELP_COMMAND> ::= CREATE RELATION
BEGIN

WRITELN;WRITELN;

WRITELN(’You can define a new schema for a relation as follows:’);
WRITELN(’CREATE RELATION <RELNAME> IN <DBNAME> USING SCHEMA’);
WRITELN(® { <ITEMNAME> <TYPEl> <TYPE2> <LENGTH> }°);

WRITELN(’ where : <TYPE1> = SIGNED_INT or INTEGER);

WRITELN(’ UNSIGNED_INT’);

WRITELN(’ UNINTERPRET’);
WRITELN(’ ASCII’);

WRITELN(’ RECORD_PTR’);
WRITELN(’ STRINQ_PTR');
WRITELN(’ <TYPE2> = FIXED’);

WRITELN(’ VAR’);

WRITELN(’ <LENGTH>= of item in bytes’);
WRITELN;

WRITELN(You can also create a new relation which uses the’);
WRITELN(“already defined schema of any given view :7);

WRITELN;
WRITELN(’CREATE RELATION <RELNAME> USING VIEW <OLD_VIEW>‘)
END;
<HELP_COMMAND> ::= CREATE CONNECT VIEW
BEGIN
WRITELN; WRITELN;
WRITELN(‘CREATE CONNECT VIEW <NEW_VIEW> <REST>’);
WRITELN(‘<REST> = FROM <SOURCE_VIEW1> <STRING_PTR> <SOURCE_VIEW2>")
END;
<HELP_COMMAND> ::= CREATE JOIN VIEW
BEGIN
WRITELN; WRITELN;
WRITELN(‘CREATE JOIN VIEW <NEW_VIEW> <REST>‘);
WRITELN(’<REST> = FROM <SOURCE_VIEW1> <ITEM1> <SOURCE_VIEW2> <ITEM2>")
END;
<HELP_COMMAND> ::= CREATE PROJECT VIEW
BEGIN
WRITELN; WRITELN;
WRITELN(‘CREATE PROJECT VIEW <NEW_VIEW> <REST>‘);
WRITELN(“<REST> = FROM <SOURCE_VIEW> <INC_EXC> <PROJECT_ITEMS>);

WRITELN(‘where <INC_EXC>= INCLUDING(default) or EXCLUDING’);
WRITELN(‘and <PROJECT_ITEMS> = sequence of items to project’)

END;

<HELP_COMMAND> ::= CREATE SELECT VIEW

BEGIN
WRITELN;WRITELN;
WRITELN(“CREATE SELECT VIEW <NEW_VIEW> <REST>?);
WRITELN(’<REST> = FROM <SOURCE_VIEW> WHERE <WHERE CLAUSE> <OPTIONS>")3;
WRITELN; -
WRITELN(“<WHERE_CLAUSE> = sequence of <BINARY> or <UNARY> clause(s),’);
WRITELN(‘separated by AND’);WRITELN;
WRITELN(‘where <BINARY> = <ITEM> <BINARY_OP> <VALUE>");

WRITELN(’<BINARY OP> = =, < ,<, >, <=, > “);WRITELN;
WRITELN(’and <UNARY> = <ITEM> <UNARY_OP>‘);
WRITELN('<UNAR¥_QP> = IS VALUED or IS NULL’)
END;
<HELP_COMMAND> ::= CREATE ORDER VIEW
BEGIN
WRITELN;WRITELN;
WRITELN(’CREATE ORDER VIEW <NEW_VIEW> <REST>‘);
WRITELN(‘where <REST> = FROM <SOURCE_VIEW> <ORDER_ITEMS> <ASQ_OR_DESC>');
WRITELN;

WRITELN(’<ORDER_ITEMS>
WRITELN(’<ASC_OR DESC>

sequence of items to sort”);
ASCENDING(default) or DESCENDING’)

END;
<HELP_COMMAND> ::= DELETE
BEGIN

WRITELN;WRITELN;

[+

WRITELN(’You may delete DATABASE, RELATION, or VIEW by’);

WRITELN(‘saying DELETE <which-type> <identifier of thing to delete>’)
END;
<HELP_COMMAND> ::= DISPLAY
BEGIN
WRITELN;WRITELN;
WRITELN(’This command allows you to see a view on your terminal.’);
WRITELN(Just say, DISPLAY <view name>")

END;
<HELP_COMMAND> ::= ECHO
BEGIN

WRITELN;WRITELN;

WRITELN(‘This command serves as a simple test to see if the DBP’);
WRITELN(is up and running. Say ECHO <any-word> and you should’);
WRITELN(receive an echo of the word you received. If you do not”);
WRITELN(then the communications from the VAX to the DBP has not’);
WRITELN(‘been initialized correctly.’)

END;
<HELP_COMMAND> ::= INPUT
BEGIN
WRITELN;WRITELN;

WRITELN(’Take all further command input from the file referenced”);
WRITELN(‘using logical name DBPIN. Assign the logical name prior’);
WRITELN(to invoking DBPQL. As an example :‘);WRITELN;
WRITELN(”$ ASSIGN DBP.DAT DBPIN’);
WRITELN(‘will assign the file DBP.DAT to the logical name DBPIN.”);
END;
<HELP_COMMAND> ::= LIST
BEGIN
WRITELN;WRITELN;
WRITELN(’Type help <one-of-the-following> for further help on list:”);
WRITELN(LISTVIEW’);
WRITELN(’LISTVIEWS’);
WRITELN(‘LISTDB’);
WRITELN(’LISTDBS’);
END;
<HELP_COMMAND> ::= LISTVIEWS
BEGIN
WRITELN;WRITELN;
WRITELN(’LISTVIEWS gives a list of all available views.’)
END;
<HELP_COMMAND> ::= LISTDB
BEGIN
WRITELN;WRITELN;
WRITELN(’Two forms: LISTDB <DBNAME> and LISTDB ALL’);
WRITELN(The database entities : file and view are listed for”);
WRITELN(’the given database(s).’);WRITELN;
WRITELN(’See HELP LISTDBS for a brief form which lists only database names.’)
END;
<HELP_COMMAND> ::= LISTDBS
BEGIN
WRITELN; WRITELN;
WRITELN(’LISTDBS lists all currently available iDBP databases.’);
WRITELN(’For a list containing file and view names, see HELP LISTDB.)
END;
<HELP_COMMAND> ::= LISTVIEW
BEGIN
WRITELN; WRITELN;
WRITELN(’LISTVIEW <view name> gives the structure of the specified view.’);
_ WRITELN(’The item names, data types, and item lengths are printed.”)
END;

<HELP_COMMAND> ::= LOAD

BEGIN
WRITELN;WRITELN;
WRITELN(“LOAD <view name> <tuples>’);WRITELN;
WRITELN(‘where <tuples> is a sequence of tuples and each tuple’);
WRITELN(’is in the form : [valuel value2 value3 ... 17);
WRITELN;WRITELN(Note the brackets must be included.’)

END;
<HELP_COMMAND> ::= PERFON
BEGIN

WRITELN;WRITELN;

WRITELN(’Turns on the Performance Tracing.’);

WRITELN(‘The following statistics are measured :’);WRITELN;
WRITELN(‘l. Elapsed Clock Time’);WRITELN(’2. Elapsed CPU Time’);
WRITELN(’3. Buffered I/0 Count’);WRITELN(4. Direct I/0 Count’);
WRITELN(’5. Page Fault Count’)

END;
<HELP_COMMAND> ::= PERFOFF
BEGIN
WRITELN;WRITELN;
WRITELN(Turns the performance tracing off -~-> see HELP PERFON’)
END;
<HELP_COMMAND> ::= TRACEON
BEGIN
WRITELN;WRITELN;

WRITELN(’Turns the byte tracing mechanism on. This mechanism allows’);
WRITELN(‘the system developer to view the exact form of the’);
WRITELN(‘request and response blocks sent/received over the’);
WRITELN(communications line between the VAX and the DBP.’)

END;
<HELP_COMMAND> ::= TRACEOFF
BEGIN

WRITELN; WRITELN;

WRITELN(’Turns the byte tracing mechanism off --> see HELP TRACEON’)
END;
*
* INPUT FROM DEVICE

<INPUT> ::= INPUT
BEGIN
INPUT_FIRST := TRUE;
INPUT FILE := TRUE
END; -

*
* LIST DATABASES

<LIST_DBS> ::= LISTDBS
BEGIN
START;
LIST DATABASE(BLANK IDENT,!,FALSE,TRUE);
QUERY
END;

oo

* LIST DATABASE

o
x

<LIST DB> ::= <LISTDBK> <LISTDB_REST>
QUERY;

<LISTDBK> ::= LISTDB

START;

<LISTDB_REST> ::= <ID>

LIST_DATABASE(SSTACK[SP].IDNAME,SSTACK[SP].IDLEN,TRUE,FALSE);
<LISTDB_REST> ::= ALL o
LIST_DATABASE(BLANK IDENT,1,TRUE,TRUE);

o

* LIST VIEWS

g
=

<LIST_VIEWS> ::= <LIST_VIEWSK>
BEGIN
START;
LIST _VIEWS;
QUERY
END;
<LIST_VIEWSK> ::= LISTVIEWS

.
]
oo

* LIST VIEW

<LIST VIEW> ::= <LIST VIEWK> <WHICH VIEW>
BEGIN
START;
DESCRIBE_VIEW(ITEMI1,ITEMIL,FALSE);
QUERY
END;
<LIST VIEWK> ::= LISTVIEW

H]
<WHICH_VIEW> ::= <ID>
BEGIN
ITEM]1 := SSTACK[SP].IDNAME;
ITEM1L:= SSTACK[SP].IDLEN
END;
*

* LOAD

x

<LOAD> ::= <LOADK> <LV_REST>
BEGIN
END_CURSOR(1,TRUE);
QUERY
END;
<LOADK> ::= LOAD <ID>
BEGIN
START;
SC_MODE := 1; (* RANDOM *)
SC_DIRECTION := 0; (* FORWARD-ONLY *)
SC_RETEST := 0;

(* START A CURSOR FOR LOADING THIS VIEW *)

(* ATTACH THE SOURCE VIEW, FIRST *)
FREE(BLANK_IDENT,1,TRUE);
ITEMS3([1] := SSTACK[SP].IDNAME;
ITEMS3L[1] := SSTACK[SP].IDLEN;
ATTACH(ITEMS3,ITEMS3L,1,3,0,0,0);
START_CURSOR(1,SSTACK[MP+1].IDNAME,SSTACK[MP+1].IDLEN,
SC_MODE, SC_DIRECTION,SC RETEST)
END;
<LV_REST> ::= <TUPLE§>

H
<TUPLES> ::= <TUPLE>

H
<TUPLES> ::= <TUPLES> <TUPLE>

9
<TUPLE> ::= <START_TUPLE> <LV_ITEMS> <END_TUPLE>
STORE(1,INTEGRITY,IDCOUNT,ITEMS1,ITEMSIL);
<START_TUPLE> ::= [

IDCOUNT := 0;
<END_TUPLE> ::=]

’
<LV_ITEMS> ::= <LV_ITEM>

’
<LV_ITEMS> ::= <LV_ITEMS> <LV_ITEM>
H]
<LV_ITEM> ::= <ID>
BEGIN
IDCOUNT := IDCOUNT + 1;
ITEMS1[IDCOUNT] := SSTACK[SP].IDNAME;
ITEMSIL[IDCOUNT] := SSTACK[SP].IDLEN
END;
<LV_ITEM> ::= <NO>
BEGIN
IDCOUNT := IDCOUNT + 1;
NUM_TO_ASCII(SSTACK[SP].IVAL,ITEM1,ITEMIL);
ITEMS1[IDCOUNT] := ITEMI1;
ITEMS1L[IDCOUNT] := ITEMIL
END;

[Ye—

* PERFORMANCE ON

<PERFORM_COMMAND> ::= PERFON

BEGIN
WRITELN;
WRITELN(’Performance Monitoring is turned on.’);
PERFON

END;

&
k3

* PERFORMANCE OFF
%*
<PERFORM_COMMAND> ::= PERFOFF
BEGIN
WRITELN;
WRITELN(’Performance Monitoring is turned off.’);
PERFOFF
END;

*

* TRACE ON

<TRACE_COMMAND> ::= TRACEON

BEGIN
WRITELN;
WRITELN(Trace is turned on.’);
TRACEON

END;

e,

* TRACE OFF

<TRACE_COMMAND> ::= TRACEOFF

BEGIN
WRITELN;
WRITELN(’Trace is turned off.”);
TRACEOFF ’

END;

APPENDIX G - A sample DBPQL user dialog

$
$ql
_TTBO: allocated
DBPQL : DBP Query Language Version 1.0
Ok

QL> help
The following commands are available :

CREATE DELETE DISPLAY ECHO INPUT LIST
LOAD PERFON PERFOFF TRACEON
TRACEOFF '

General Notes :

1. To continue lines of input use a dash(-) at the end
of each line to be continued.
2. To exit DBPQL, just enter X at the prompt.

For a specific help, type HELP <command>
QL> help create
You can create several different entities :

CREATE DATABASE
CREATE RELATION
CREATE CONNECT VIEW
CREATE JOIN VIEW
CREATE PROJECT VIEW
CREATE SELECT VIEW
CREATE ORDER VIEW

To get more help on any one of these,
type HELP <one of the above lines>

QL> create database fem
Ok

QL> help create relation

You can define a new schema for a relation as follows:
CREATE RELATION <RELNAME> IN <DBNAME> USING SCHEMA
{ <ITEMNAME> <TYPEl> <TYPE2> <LENGTH> }
where : <TYPEL1> = SIGNED_INT or INTEGER
UNSIGNED_INT
UNINTERPRET
ASCII
RECORD_PTR
STRING_PTR
<TYPE2> = FIXED
VAR
<LENGTH>= of item in bytes

You can also create a new relation which uses the
already defined schema of any given view :

CREATE RELATION <RELNAME> USING VIEW <OLD_VIEW>

QL>
QL>
QL>
QL>
QL>
QL>
QL>
QL>
Ok,
Ok

QL>

create relation beams in fem using schema -

group integer fixed 4 -
element integer fixed 4 -
nodel integer fixed 4 -
node2 integer fixed 4
el-type ascii fixed 4
nom-size ascii fixed 4 -
material ascii fixed 8

View BEAMS has been created.

listview beams

View : BEAMS
Underlying Relation : BEAMS

of items = 7

GROUP Signed Integer
ELEMENT Signed Integer
NODE1 Signed Integer
NODE2 Signed Integer
EL-TYPE ASCII Alphanumeric
NOM-SIZE ASCII Alphanumeric
MATERIAL ASCII Alphanumeric
QL>

qQL>

QL> create relation nodes in fem using schema -
QL> node integer fixed 4 -

QL> xcoord integer fixed 4 -

QL> ycoord integer fixed 4 -

QL> zcoord integer fixed 4

Ok, View NODES has been created.

Ok

QL> listviews

List of Views :

BEAMS
FILEl
NODES
PEOPLE

QL>

perfon

Performance Monitoring is turned on.

QL>
QL>
QL>
QL>

load beams -

[111 2 wfl w8x8 aluminum] -
[123414 1i3x2 titanium] -

[235 6 wfl w8x8 graphite]

Clock 27.44922

CPU

0.15000

Buffered I/0 count 40
Direct I1/0 count 0
Page Fault count 0

Ok

o B SRR A I)

qQL>
QL> perfoff

Performance Monitoring is turned off.

QL> load nodes =~

QL> [1 53620] -
QL> [267 100] -
QL> [31011 0] =~
QL> [4 2353 0] -
QL> [554 822] ~
QL> [6 84 21 2]
Ok

QL> display beams

GROUP ELEMENT NODEl

NODE2 EL-TYPE NOM-SIZE MATERIAL

1 1 1
1 2 3
2 3 5

QL> display nodes

NODE XCOORD YCOORD ZCOORD

1 53 62
2 67 10
3 10 11
4 23 53
5 54 82
6 84 21

QL> traceon
Trace is turned on.

QL> display nodes
== DBP REQUEST ==

of bytes is 9
Byte Stream :

MNNOOOO

9A 05 4E 4F 44 45 53 FF

== DBP RESPONSE ==
of bytes is 112
Byte Stream :

F9 02 9A 00 01 00 O1 00
4E 4F 44 45 53 05 4E 4F
02 04 00 03 00 01 04 04
44 45 53 03 01 01 04 06

4E 4F 44 45 53 03 02
00 05 4E 4F 44 45 53
52 44 00 05 4E 4F 44

01
03
45

00

06
44
4E
58
04
03
53

04
45
4F
43
06
01
FF

NODE XCOORD YCOORD ZCOORD

03
53
44
4F
59
04
0A

07
00
45
4F
43
06
00

00
00
00
52
4F
5A
00

w8X8
I3X2
w8X8

05
00
05
44
4F
43
00

00
0l
4E
00
52
4F
FF

05
01
4F
05
44
4F
00

ALUMINUM
TITANIUM
GRAPHITE

. «NODES..

9000000000000

NODES.NODES« ..
..OQOOOONODE..NO
DESe. « « « « XCOORD. .
NODES. « «+ «YCOORD
« «NODES.....ZCO0
RDe .NODESeeeoees

== DBP REQUEST
of bytes is 43
Byte Stream :

01 FF 06 FF 00 00 01 00 05 4E 4F 44 45 53 01 30 eeeeesss.NODES.O
FF 00 02 01 O1 05 4E 4F 44 45 53 01 20 FF 00 10 .+e.es.NODES. ...
01 01 FF 06 FF 00 03 FF 06 FF 00 cecessssense

== DBP RESPONSE ==
of bytes is 106
Byte Stream :

F1 01 01 01 31 02 35 33 02 36 32 01 30 FF 00 F1 ...¢1.53.62.0...
01 01 01 32 02 36 37 02 31 30 O1 30 FF 00 F1 01 ...2.67.10.0....
01 01 33 02 31 30 02 31 31 01 30 FF 00 F1 01 O1 ..3.10.11.0ccc0
01 34 02 32 33 02 35 33 01 30 FF 00 F1 01 Ol 01 +«4.23.53¢0cccces
35 02 35 34 02 38 32 01 32 FF 00 F1 01 01 Ol 36 5¢54.82.e2¢c0eeeb
02 38 34 02 32 31 01 32 FF 00 F6 08 10 00 00 64 +84.21e2.0c0...d
00 00 1F 00 02 00 00 OO0 FF 00 OA 11 2E D9 OA 11 <ecevccscccncccse

00 00 IF 00 02 00 00 00 FF 00 cecccccoce
1 53 62 0
2 67 10 0
3 10 11 0
4 23 53 0
5 54 82 2
6 84 21 2

QL> traceoff
Trace is turned off.

QL> create join view jl from beams nodel nodes node
ok

.115£Qie§fdl

View..! Ji

Underlwing Relation ! FEM

% of items = 11

GROUF Signed Inteder 4

ELEMENT Sidned Inteder 4
‘ NORE1 Signed Inteder 4
‘ NODE2 Signed Inteser 4
- EL-TYPE ASCII Alephanumeric 4

NOM~-SIZE ASCII Alshanumeric 4
- MATERIAL ASCII Alphanumeric 8

NODE Sidned Inteder 4

X Sigdned Inteder 4

Y Sidned Inteder :

z Sidned Inteder

create select vie; seli fﬁém beams uhené el-tyres=s wfi
ok

QL> .display sell

ASue

GROUF ELEMENT NODE1 NODE2 EL-TYPE NOM-SIZE MATERIAL

11 1 2 WFL WS X8 ALUMINUN
2 3 5 6 WFL Waxs GRAFHITE
QL

DEFOL - Goodbue.
$

FIGURES

VAX |1/780

-——HOST COMPUTER

SPP

@ g PROTOCOL SOFTWARE
INTEL DATA BASE
DBP

PROCESSOR

-

84 MBYTE |
DISK

MASS STORAGE

Figure 1 - The Physical DBP Environment

SOURCE VIEWS JOIN VIEW

e 1) | (FROM SOURCE 2)

SOURCE 1 (FROM SOURCE 1)
B I
C 1A A
A 1R R
R ’
SOURCE 2
C |
R
D
A
Figure 2a - The JOIN Command
SOURCE VIEW SELECT VIEW

»
> .
=

Figure 2b - The SELECT Command

PROJECT VIEW

:}f

SOURCE VIEW

Figure 2c¢ - The PROJECT Command

SOURCE VIEW ORDER VIEW

l :: ||||"
=4

I [Oj@ >

Figure 2d - The ORDER Command

SOURCE VIEWS
SOURCE 1

opmp

SQURCE 2

O

o mm

UNION VIEW

(FROM SOURCE 1)

(FROM SOURCE 2)

Figure 2e - The UNION Command

SOURCE VIEW
(UNSTRUCTURED)

..... AX. . AR
XX aaaa.
XX XX..

>

SUBSTRING VIEW

........

Figure 2f - The SUBSTRING Command

SOURCE_VIEWS CONNECT VIEW

SOURCE 1 (STRUCTURED) (FROM SOURCE 1) ¢ (FROM SOURCE 2)
r 1 J 1 ...]
] 1
AJ,;i FJ :]
.'I 4]
SOURCE 2 (UNSTRUCTURED)]
1

Figure 2g - The CONNECT Command

LANGUAGE
SKELETON
PARGEN
\‘*'P ERATOR LAYER 3
/ oerat DBPGL
FILE
R -
P LAYER 2
— | Bics DBPSSP
3
::.___—_":___._:.'_._______'.__;
I A Larer |
LA el REQUEST -
mlﬁ GEN. | IW”EL .

Figure 3 - HILDA : A general flow chart

HOST DBP— =
1 1 !
LAYER 3: DBPOLI LAYER 2 : DBPSSP | LAYER |: SPP ,
i i i
DATA BASE | DATA BASE] SERVICE !
[}
e Tanunce | BN - .
+ SEMANTICS | PROTOCOL '
! SPECIFICATION |]
| PACKAGE ! !
i i !
H i |
! | SEND REOUEST !
N SN =
—p L ‘o4 g 04 I
I END: 4 o
"CREATE DATABASE! ?5 rot !
TEST * | 53 proipco
54
FF
00

—— e e —— ———

S S

RECV(RESPONSE, NBYTES{ ReCE |VE RESPONSE !
H |

- e ey e e o — — ——

poepP MORE) :
RESPONSE <=—|F MORE THEN ~- y 24
E FROW. TEE oas DATA ! protioco!
i ! !
] i |
] |]
1 ! |
e : !

Figure 4 - HILDA : A sample query

OP LAYER >

JTTOM LAYER=

HILDA

QUERY
PROCESS ING

ASSEMBLY
TOOLS

Figure 5 - Layers within HILDA and SPP

If the host sends the following request module to iDBP:

| IDID | «~—=s—~Command-1 | Command=2

| =Command«3= |

Then the host and iDBP will transmit the following segments:

(values are for example only)

HOST
1.
e —
| ID | ID | 4-byte a4
Aremriapmremnt header
2.
| Command=1-a | 512 ceammd
+ + bytes
3.

pr g

| Command=l=b Command=2=a | 512 ==}
+ + bytes

4.

anansnsa

[

512 |
bytes +

Number
Buffer

Number
Buffer

Number
Buffer

Number
Buffer
Buffer

4~byte

header

iDBP

of Segments = },
1 Length = 4

of Segnents =1,
1 Length = 512

of Segments = 1,
1 Length = 512

of Segments = 2,
1 [Bmth = 4,
2 Length = 512

B e————
| ID| ID |

Response=A

Figure 6 - General Form for Host-DBP Interaction

Terminal! _.TTRO! Device.Tuyre!
Inrut? ?4600 LFfill: O
Outrut: 9600 CRfill: O

Terminal Characteristics?

FPassall Echo

No Hostsunc TTsenc

No UWrar Score
Eightbit BEroadcast
Fulldup No Modem

No Handur No Brdestmbx
Set.sreed No ANSI.CRT

No Advanced_video No Edit_mode

VTS2
Width: 80
Fade? 24

Ture_ahead
l.owercase

No
No
No
No
No
No

Remote
Readsunc
Local._echo
DMA

Redis
REC.CRT

OQwner?

No Owner

Faritut: None

No
No
No
No
No
No
No

Escare

Tab
Holdscreen
Form
Autobaud
Altuyreahd
Rlock_mode

Figure 7 - VAX Asynchronous Communications Parameters

PCB ADDRESS VECTOR

iy

CONTROL. PCB

RESERVED

1D8P STATUS

HOST STATUS

RESERVED

REQUEST LENGTH

¢ OF SEGMENTS

BUFFER | POINTER

INDEX

BUFFER | LENGTH

BUFFER 2 POINTER

ADDRESS
EEOC : 0000

CONTROL SESSION
PCB ADDRESS

BUFFER 2 LENGTH

APP, SESSION
PCB ADDRESS

APPL ICATION PCB

Figure 8 - Threaded Data Structure of SPP

ABOVE
FORMAT

DATA

DATA

DATA
\/\

DATA

Request Module

COMMAND |
Single Command
COMMAND 2
OPCODE BYTE
COMMAND 3
. PARAMETERS/
. DATA
TERMINATOR BYTE |
COMMAND N TERMINATOR BYTE 2

Figure 9 - Request Module Form

(0]]

ﬂﬁ*‘rtsg;: % , ol
REMARK HOST "HELLO"™ —e ,{gg:!iéﬁo. 57 -
SEND: v — 22

45

AC

4C

4F

FF

00

Figure 10 - A sample assembly for "REMARK"

REFERENCES

Fulton, R. E.: "IPAD Project Overview," NASA

Conference Publication 2143, Sept. 17-19, 1980.

Blackburn, C. L.; Storaasli, 0. ©O.; and Fulton, R.
E.: "The Role and Application of Data Base Management

in Integrated Computer-Aided Design," Proceedings of

the AIAA/ASME/ASCE/AHS 23rd Structures,Structural

Dynamics, and Materials Conference, New Orleans, LA,

May 10-12, 1982.

Fishwick, P. A.; and Blackburn, C. L.:"Managing
Engineering Data Bases: The Relational Approach,"”

(CIME) Computers in Mechanical Engineering, Vol. 1,

No. 3, Jan. 1983.

Martin, J. : Computer Data Base Organization, 2nd

Ed., Englewood Cliffs, N.J., Prentice-Hall, 1977.

Date, C. J. : An Introduction to Data Base Systems,

2nd E4d., New York, NY., Addison-Wesley, 1977.

RIM Users Guide, Academic Computer Center, University

of Washington, W33, Jan. 1980.

Maryanski, Fred J.:"Backend Database Systems, "

Computing Surveys, Vol. 12, No.l, March 1980.

10.

11.

12.

13.

14.

15.

16.

Canaday, R. E.;Harrison, R. D.;Ivie, E. L.; Ryder,
J. L.; and Wehr, L. A.: "A Back-End Computer for

Data Base Management," Communications of the ACM, Vol.

10, pp. ©575-582, Oct. 1974.

Codd, E. F.: "Relational Data Base: A Practical

Foundation for Productivity," Communications of the

ACM, Vol. 25, No. 2, Feb. 1982.

DBP DBMS Reference Manual. Intel Corporation, Austin,

TX, Revision 001, Order No. 222100-001, August 1982.

Davenport, William P. : Modern Data Communication -
Concepts , Language, and Media. Hayden Book Company,

1971.

VAX/VMS 1I/0 User's Guide(Volume 1). Digital
Equipment Corporation, Maynard , MA., Software Version

3.0, May 1982.

DBP Operations Manual. Intel Corporation, Austin, TX,

Revision 001, Order No. 222101-001, August 1982.

DBP Host Link Reference Manual. Intel Corporation,
Austin, TX, Revision 001, Order No. 222102-001,

August 1982.

Noonan, Robert E.; and Collins, Robert: "The Mystro
Parser Generator PARGEN User's Manual: Version 6.2,"

Aug. 1982.

Adiba, M.:"Derived Relations: A Unified Mechanism for

Views, Snapshots, and Distributed Data," Proceedings

of the Seventh International Conference on Very Large

Data Bases, Cannes, France, Sept. 198l.

17.

18.

19.

DeRemer, Frank; and Pennello, Thomas J.: "Efficient

Computation of LALR(l1) Look-ahead Sets," Proceedings

of SIGPLAN Symposium on Compiler Construction, pp.

176-187, Aug. 1979.

Powell, M. L. and Linton, M. A.: "Database Support

for Programming Environments," Proceedings of the

Annual Database Week Meeting, Engineering Design

Applications, San Jose, May 23-26, 1983.

Feyock, Stefan:"Transition diagram-based CAI/HELP

systems"”, International Journal of Man-Machine

Studies, Vol. 9, pp. 399-413, 1977.

VITA

Paul Anthony Fishwick

Born in Bebington, Cheshire, England, July 18, 1955.
Graduated from Downingtown High School, Pennsylvania, B.S.
Mathematics, Pennsylvania State University. M.S.
candidate, College of William and Mary, 1981-1983, with a
concentration in Computer Science. The course
requirements for this degree have been completed, but not
the thesis: HILDA: The Flexible Design of a Data Base

Machine Executive.

The author has had work experience at Newport News
Shipbuilding and Dry Dock Co., Virginia working as a
software analyst in the in-house computer aided ship
design project. The author is now employed by Kentron
Technical Center, Virginia where he is currently
performing integrated computer-aided design and data base

machine research at NASA Langley Research Center.

	William & Mary
	W&M ScholarWorks
	1983

	HILDA: The Flexible Design and Implementation of a Database Machine Executive
	Paul Anthony Fishwick
	Recommended Citation

	tmp.1539892610.pdf.GWaqh

